

1. (a) The quantum yield of $S_1 \rightarrow S_0$ transition for Rhodamine 6G is 0.87, and the corresponding lifetime is ≈ 5 ns. Calculate the radiative and nonradiative lifetimes (τ_{sp} and τ_{nr} , respectively) of the S_1 level (assume η =1.36 for ethanol).

(b) From a knowledge of the radiative life time τ_{sp} of Rhoamine 6G (from part a),

(i) Calculate the corresponding $|\mu|$, where $\lambda = 0.59 \ \mu m$ at the maximum of the emission curve.

(ii) Calculate the effective atomic dimension, a.

2. Consider a 488 nm Ar-ion gas laser. The tube length L=1 m, tube mirror reflectance are 99.9% and 95%. The linewidth $\Delta v=3$ GHz, the loss coefficient is $\alpha=0.1$ m⁻¹, spontaneous decay time $\tau_{sp}=1/A_{21}=10$ ns and $\eta=1$.

(i) What is the threshold population inversion?

If the mirrors are concave and have radius of curvature equal to 1 m. calculate the beam diameter at;

- (ii) The center of the laser.
- (iii) At the mirrors.
- (iv) At distance of 10 m from the laser.
- (v) What is the divergence angle of the beam?
- 3. Consider a two-level system, non-degenerate, homogeneously broadened system of atoms with line-shape function g(v) and energy levels E_1 and E_2 . This system is pumped in a steady-state by monochromatic radiation with intensity I_v and frequency $v = (E_2-E_1)/h$.

- (a) give stimulated transion rate W_{21} in terms of the pump intensity I_v and other atomic parameters.
- (b) Derive a steady-state expression for $(N_1-N_2)/(N_1+N_2)$ of this system in terms of W_{12} , W_{21} and A_{21} . N_1 and N_2 are the population density for the lower and upper state respectively; A_{21} is the spontaneous emmission rate.
- (c) Can acheieve population inversion for this system? If so, what is the necessary pump intensity I_v?
- 4. The R₁ laser transition of Ruby has a good approximation a Lorentzian shape of width (FWHM) 330 GHz at room temperature. The measured peak transition cross-section is $\sigma = 2.5 \times 10^{-20}$ cm². Calculate the radiative lifetime (the refractive index is η =1.76). Since the observed room temperature lifetime is 3 ms, what is the fluorescence quantum yield?
- 5. Derive the expression $A = \frac{16\pi^3 v_0^3 \eta |\mu|^2}{3h\varepsilon_0 c^3}$ for the Einstein A coefficient, i.e.

the rate of spontaneous emission.

<u>PHYSICAL CONSTANTS</u>		
Rest mass of electron	m	$= 9.110 \times 10^{-31} \text{ kg}$
Charge of electron	e	$= 1.602 \times 10^{-19} \mathrm{C}$
Avogadro's constant	NA	$= 6.022 \times 10^{23} \text{ mol}^{-1}$
Planck's constant	h	$= 6.626 \times 10^{-34} \text{ J s}$
Boltzmann's constant	k	$= 1.381 \times 10^{-23} \text{ J K}^{-1}$
Speed of light (vacuum)	c	$= 2.998 \times 10^8 \text{ m s}^{-1}$
Stefan-Boltzmann constant	σ _{sb}	$= 5.670 \times 10^{-8} \text{ W m}^{-1} \text{ K}^{-4}$
Permittivity of a vacuum	E0	$= 8.854 \times 10^{-12} \text{ Fm}^{-1}$

مع تمنياتي لكم بالتوفيق والنجاح