Dr Salwa Alsaleh Dept. of Physics and Astronomey College of Science- King Saud University Riyadh 11451- Saudi Arabia ☎ +966 (11) 80 52458 ⊠ salwams@ksu.edu.sa ☜ fac.ksu.edu.sa/salwams

Classical Mechanics (Phys 508) Course Plan

Classical mechanics is an essential, and perhaps the most fundamental discipline in modern advanced physics. This course contain almost all the major ideas and techniques that are used in advanced theoretical physics. This course is **three hours per week** and taught for fifteen weeks. The subjects that wil be taught and the assignments are enlisted the following table

Week	Subject(s)	Assignments	Discover
1	Introduction to classical me-	Study different types of tensors	Further reading: Manifolds and
	chanics, Motion in space and	used in physics	curvilinear coordinates. Covari-
	the mathematics of curves in		ant calculus.
	space, Introduction to differen	-	
	tial geometry and tensors, the		
	metric. Basic notions in differ-	-	
	ential geometry		
2	Coordinates transformation	Solve problem set 1	Using Mathematica with vector
	vector calculus, dealing with		calculus
	indicies		
3	Curvilinear coordinate systems	Cont. Problem set 1	Lagrangian formalism of quan-
	more on differential geometry		tum mechanics and path inte-
			grals.
4	Elements of differential geome-	Problem set 2	The curvature of spacetime.
	try, curvature		
	Constructing equations of mo-		Hamilton Jacobi equation
1	tion, the Lagrangian and sta		
	tionary action principle(s).		
1	Application to Lagrangian me		Symmetric in modern physics
	chanics, Neother's theorem		Wigner's theorem in quantum
			mechanics.
1	Symmetries and conservation		Minkowski space, Poincaré
	laws, Neother's theorem (Trans		group of transformations.
	lational symmetry, rotational		
	symmetry, boost symmetry)		

Week	Subject(s)	Assignments	Discover
8	Relativistic dynamics, construct-	Problem set 4	Polyakov (string) action.
	ing a Lagrangian who has		
	Lorentz or Poincaré symmetry.		
9	Hamiltonian mechanics, canoni-	Problem set 5	Relativistic Hamiltonian me-
	cal transformations		chanics
10	Applications to Hamiltonian me-	Cont. Problem set 5	Phase space and differential ge-
	chanics, Phase space and Pois-	-	ometry
	son algebra		
11	Classical Field theory	Problem set 6	More on strings as 1D field the
			ory.
12	Symmetries in Field theory and	Index gymnastics, dealing with	Conformal symmetry in field the-
	relativistic field theory.	indices.	ory
13	Examples of classical fields	Problem set 7	Curved space-time and gravity.
	Maxwell field and General Rela-	-	
	tivity.		
14	Gauge invariance in fields	Cont Problem set 7	Non-Abelian gauge fields.
15	Revision and presentations	NA	NA.

These are the main topic covering almost all branches of theoretical physics. This is only an introductory course to these concepts. All students are encouraged to discover this topic further. This can be done by following the discover section. And then present one selected topic from there in an open discussion session in the week 14 and 15. This will be a part of grading. Another part of grading will go to solving problem sets. There are 7 problem sets. And three reports to be written on some selected topics. Making a total of 10 assignments. There is also two mid terms done during the studying weeks. Moreover a final examination held after week 15. This course is based on research and thorough interaction between the instructor and students. Discussion and thought experiments are key aspect in achieving the goal of this course. The following books are recommended references.

- Finn, J. Michael. Classical mechanics. Jones & Bartlett Publishers, 2009.
- o Bagchi, Bijan. Advanced Classical Mechanics. CRC Press, 2017.
- Goldstein, Herbert. Classical mechanics. Pearson Education India, 2011.

Other references are recommended for the ' discover' section

- Tu, Loring W. An introduction to manifolds. Springer Science & Business Media, 2010.
- Nakahara, Mikio. Geometry, topology and physics. CRC Press, 2003.
- Arnol'd, Vladimir Igorevich. Mathematical methods of classical mechanics. Vol. 60. Springer Science & Business Media, 2013.
- Dittrich, W., M. Reuter, and M. Mobius. "Classical and Quantum Dynamics from Classical Paths to Path Integrals." (1996) 594.

Please ask me if you could not find any of the above references, or you feel you need more reference.

Dr Salwa Alsaleh