Chapter 5

Compacting and Finishing Part 1

CE 417 King Saud University

5-1 PRINCIPLES OF COMPACTION

- The Compaction Process
- Optimum Moisture Content
- Compaction Specifications
- Measuring Field Density

- Compaction:
 - is the process of increasing the density of a soil by mechanically forcing the soil particles closer together, thereby expelling air from the void spaces in the soil.
- Consolidation:
 - is an increase in soil density of a cohesive soil resulting from the expulsion of water from the soil's void spaces (naturally).
- Consolidation may require months or years to complete, whereas compaction is accomplished in a matter of hours.

	Compaction force	Time	Soil type
Compaction	Mechanical	hours	Almost all types
Consolidation	Natural (expulsion of water)	Months or years	Cohesive

- Compaction has been employed for centuries to improve the engineering properties of soil.
- Improvements include:
 - 1. increased bearing strength,
 - 2. reduced compressibility,
 - 3. improved volume-change characteristics, and
 - 4. reduced permeability.

- the equipment and methods employed for compaction in <u>building construction</u> are usually somewhat different from those employed in <u>heavy and highway construction</u> because of:
 - the limited differential settlement that can be tolerated by a building foundation,
 - the necessity for working in confined areas close to structures, and
 - the smaller quantity of earthwork involved.

- The degree of compaction (effectiveness) may be achieved in a particular soil depends on:
 - 1. the soil's physical and chemical properties (see Chapter 2),
 - 2. the soil's moisture content,
 - 3. the compaction method employed,
 - 4. the amount of compactive effort (from Proctor tests standard or modified), and
 - 5. the thickness of the soil layer being compacted (lift thickness).

- The four basic compaction forces are:
 - 1. static weight,
 - 2. manipulation (or kneading),
 - 3. impact, and
 - 4. vibration.

- Although all compactors utilize static weight to achieve compaction, most compactors combine this with one or more of the other compaction forces.
 - For example, a plate vibrator combines static weight with vibration.
- Manipulation of soil under pressure to produce compaction is most effective in plastic soil.

- The forces involved in impact and vibration are similar except for their frequency.
 - Impact or tamping involves blows delivered at low frequencies:
 - usually about 10 cycles per second (Hz),
 - It is most effective in plastic soils.
 - Vibration involves higher frequencies:
 - may extend to 80 cycles per second (Hz) or more.
 - Vibration is particularly effective in compaction of cohesionless soils such as sand and gravel.

- Soil moisture content:
 - is one of the five factors influencing compaction results
 - it is a very important one.
- A standard laboratory test
 - It is called a *Proctor test*
 - It has been developed to evaluate a soil's moisture density relationship under a specified compaction effort.
 - There are two Proctor tests which are:
 - Standard Proctor Test (ASTM D 698, AASHTO T-99) and
 - Modified Proctor Test (ASTM D 1557, AASHTO T-180).
 - Characteristics of these two tests are given in Table 5-1.

Test Details	Standard	Modified	
Diameter of mold			
in.	4	4	
mm	102	102	
Height of sample			
in.	5 cut to 4.59	5 cut to 4.59	
mm	127 cut to 117	127 cut to 117	
Number of layers	3	5	
Blows per layer	25	25	
Weight of hammer			
lb	5.5	10	
kg	2.5	4.5	
Diameter of hammer			
in.	2	2	
mm	51	51	
Height of hammer drop			
in.	12	18	
mm	305	457	
Volume of sample			
cu ft	1/30	1/30	
1	0.94	0.94	
Compactive effort			
ft-lb/cu ft	12,400	56,200	
kJ/m ⁸	592	2693	

TABLE 5-1: Characteristics of Proctor compaction tests

- The modified test:
 - It was developed for use where high design loads are involved (such as airport runways),
 - the compactive effort for the modified test is more than four times as great as for the standard test.

- To determine the maximum density of a soil using Proctor test procedures, compaction tests are performed over a range of soil moisture contents (see Figure 5-1).
- The peak of each curve represents the maximum density obtained under the compactive effort supplied by the test.

FIGURE 5-1: Typical compaction test results.

- Comments on Figure 5-1 are:
 - maximum density achieved under the greater compactive effort of the modified test is <u>higher</u> than the density achieved in the standard test.
 - the line labeled "zero air voids" represents the maximum possible soil density for any specified water content.

- *optimum moisture content of a soil* is the moisture content at which maximum dry density is achieved under a specific compaction effort.
 - 20% for Standard Proctor Test.
 - 15% for the modified test.
- This relationship is typical for most soils where soil's optimum moisture content decreases as the compactive effort is increased.
 - The line of optimum moisture contents demonstrates that.

- The importance of soil moisture content to field compaction practice can be demonstrated using Figure 5-1.
 - Suppose that specifications require a density of 100 lb/cu ft (1.6 g/cm³) for this soil and the compactive effort being used is equal to that of the Standard Proctor Test.
 - From Figure 5-1 it can be seen that the required density may be achieved at any moisture content between 13 and 24%.
 - a density of 105 lb/cu ft (1.68 g/cm³) can only be achieved at a moisture content of 20%.

FIGURE 5-2: Modified Proctor Test results for various soils. (Courtesy of Dr. Harvey E.

- Compaction specifications are intended to ensure that the compacted material provides:
- 1. the required engineering properties and
- 2. satisfactory level of uniformity.
- 1. The required engineering properties
 - A- prescribing the characteristics of the material to be used and
 - B- a minimum dry density to be achieved.
 - The Proctor test is widely used for expressing the minimum density requirement.
 - The specification will state that a certain percentage of Standard Proctor or Modified Proctor density must be obtained.

- As in an example, the soil of Figure 5-1,
 - 100% of Standard Proctor density corresponds to a dry density of 105 lb/cu ft (1.68 glcm3).
 - Thus a specification requirement for 95% of Standard Proctor density corresponds to a minimum dry density of 99.8 lb/cu ft (1.60 g/cm3).

- Typical density requirements range from 90% of Standard Proctor to 100% of Modified Proctor. For example,
 - 95% of Standard Proctor is often specified for embankments, dams, and backfills.
 - 90% of Modified Proctor might be used as requirement for the support of floor slabs.
 - 95 to 100% of Modified Proctor are commonly used as requirement for the support of structures and for pavement base courses where high wheel loads are expected.

- 2. satisfactory level of uniformity :
 - A lack of uniformity in compaction may result in:
 - differential settlement of structures or
 - may produce a bump or depression in pavements.
- it is important that uniform compaction be obtained.
- Uniformity is commonly controlled by specifying a maximum variation of density between adjacent areas.

- Compaction specifications are:
 - 1) performance specifications in which only a minimum dry density is prescribed.
 - 2) method specifications that prescribe the exact equipment and procedures to be used.

Measuring Field Density

- To verify the adequacy of compaction, the soil density actually obtained in the field must be measured and compared with the specified soil density.
- The methods available for performing in-place density tests include:
 - a number of traditional methods (liquid tests, sand tests, etc.) and
 - nuclear density devices.

Measuring Field Density

- All the traditional test methods involve:
 - removing a soil sample,
 - measuring the volume of the hole produced, and
 - determining the dry weight of the material removed.
- Density is then found as the dry weight of soil removed divided by the volume of the hole.

Measuring Field Density

- Nuclear density devices :
 - measure the amount of radioactivity from a calibrated source that is reflected back from the soil to determine both soil density and moisture content.
 - When properly calibrated and operated, these devices produce accurate results in a fraction of the time required to perform traditional density tests.
 - The use of nuclear density devices is becoming widespread because of increased need of rapid soil density determination.

5-2 COMPACTION EQUIPMENT AND PROCEDURES

- Types of Compaction Equipment
- Compaction in Confined Areas
- Selection of Compaction Equipment
- Compaction Operations
- Estimating Compactor Production
- Job Management

Types of Compaction Equipment

- Principal types of compaction equipment include:
 - 1. tamping foot rollers,
 - 2. grid or mesh rollers,
 - 3. vibratory compactors,
 - 4. smooth steel drum rollers,
 - 5. pneumatic rollers,
 - 6. segmented pad rollers, and
 - 7. tampers or rammers.

1.Tamping foot rollers:

- They utilize a compaction drum equipped with a number of protruding feet.
- They are available in a variety of foot sizes and shapes, including the sheepsfoot roller.

How it works?

- During initial compaction, roller feet penetrate the loose material and sink to the lower portion of the lifts.
- As compaction proceeds, the roller rises to the surface or "walks out" of the soil.
- All tamping foot rollers utilize static weight and manipulation to achieve compaction.
 - Therefore, they are most effective on cohesive soils.
- The sheepsfoot roller:
 - produces some impact force, and
 - tends to displace and tear the soil as the feet enter and leave the soil.

FIGURE 5-3: Major types of compaction equipment.

(Reprinted by permission of Caterpillar Inc., ©1971)

SELF-PROPELLED TAMPING FOOT ROLLER

CE 417 King Saud University

FIGURE 5-3: Major types of compaction equipment.

(Reprinted by permission of Caterpillar Inc., ©1971)

TOWED SHEEPSFOOT ROLLER

https://youtu.be/Q7Ck7BMtSPs?t=2 https://www.youtube.com/watch?v=8zAuqGElkuw

- 2. Grid or mesh rollers:
 - They utilize a compactor drum made up of a heavy steel mesh.
 - Because of their design, they can operate at high speed without scattering the material being compacted.
 - Compaction is due to static weight and impact plus limited manipulation.
 - Grid rollers are used to:
 - compact clean gravels and sands (most effective).
 - break up lumps of cohesive soil.
 - crush and compact soft rock (rock losing 20% or more in the Los Angeles Abrasion Test).

2. Grid or mesh rollers

- *3. Vibratory compactors:*
 - They are available in a wide range of sizes and types.
 - In size they range from:
 - small hand-operated compactors (Figure 5-4) through
 - towed rollers to large self-propelled rollers (Figure 5-5).
 - By type they include:
 - plate compactors,
 - smooth drum rollers, and
 - tamping foot rollers.
 - Small walk behind vibratory plate compactors and vibratory rollers are used primarily for compacting around the structures and in other confined area.

FIGURE 5-3: Major types of compaction equipment.

(Reprinted by permission of Caterpillar Inc., ©1971)

SELF-PROPELLED VIBRATING ROLLER

CE 417 King Saud University

FIGURE 5-4: Walk-behind vibratory plate compactor. (Courtesy of Wacker Corp.)

FIGURE 5-5: Vibratory tamping foot compactor. [Courtesy of BOMAG (USA)]

CE 417 King Saud University

- Vibratory plate compactors are also available as attachments for hydraulic excavators.
- The towed and self-propelled units are utilized in general earthwork.
- Large self propelled smooth drum vibratory rollers are often used for compacting bituminous bases and pavements.

4. Steel wheel or smooth drum rollers :

– They are used for compacting:

- granular bases,
- asphaltic bases, and
- asphalt pavements.
- The compactive force involved is primarily static weight.

FIGURE 5-3: Major types of compaction equipment. (Reprinted by permission of Caterpillar Inc., ©1971)

SMOOTH, STEEL WHEEL ROLLER

CE 417 King Saud University

- 5. Rubber-tired or pneumatic rollers :
 - They are available as:
 - light- to medium weight multi tired rollers and
 - heavy pneumatic rollers.
 - Wobble-wheel rollers are multi tired rollers with wheels mounted at an angle so that they appear to wobble as they travel.
 - This imparts a kneading action to the soil.
 - Heavy pneumatic rollers weighing up to 200 tons are used for dam construction, compaction of thick lifts, and proof rolling.
 - Pneumatic rollers are
 - effective on almost all types of soils
 - least effective on-clean sands and gravels.

FIGURE 5-3: Major types of compaction equipment.

(Reprinted by permission of Caterpillar Inc., ©1971)

SMALL, MULTITIRED PNEUMATIC ROLLER

HEAVY PNEUMATIC ROLLER

6. Segmented pad rollers :

- They are somewhat similar to tamping foot rollers except that they utilize pads shaped as segments of a circle instead of feet on the roller drum.
- As a result, they produce less surface disturbance than do tamping foot rollers.
- Segmented pad rollers are effective on a wide range of soil types.

FIGURE 5-3: Major types of compaction equipment.

(Reprinted by permission of Caterpillar Inc., ©1971)

SELF-PROPELLED SEGMENTED STEEL WHEEL ROLLER

CE 417 King Saud University

7. Rammers or tampers :

- They are small impact-type compactors which are primarily used for compaction in confined areas.
- Some rammers, like the one shown in Figure 5-6, are classified as vibratory rammers because of their operating frequency.

FIGURE 5-6: Small vibratory rammer. (Courtesy of Wacker Corp.)

CE 417 King Saud University

Compaction in Confined Areas

- The equipment available for compaction in confined areas are:
 - For trenches and around foundations includes small vibratory plate compactors (Figure 5-4),
 - tampers or rammers (Figure 5-6),
 - walk-behind static and vibratory rollers (Figure 5-7), and
 - attachments for backhoes and hydraulic excavators.
 - *Compaction Wheels* (Figure 5-8)
 - *Vibratory plate attachments* (Figure 5-9)

FIGURE 5-4: Walk-behind vibratory plate compactor. (Courtesy of Wacker Corp.)

FIGURE 5-7: Walk-behind vibratory roller with remote control. (Courtesy of Wacker Corporation)

FIGURE 5-8: Compaction wheel mounted on hydraulic excavator. (Courtesy of American Compaction Equipment, Inc.)

https://www.youtube.com/watch?v=oc81V87BgpU

CE 417 King Saud University

FIGURE 5-9: Vibratory plate compactor for excavator

FIGURE 5-9: Vibratory plate compactor attachment for excavator (Courtesy of Ingersoll-Rand Tramac) <u>https://www.youtube.com/watch?v=z7ICdFd9Y_M</u>

CE 417 King Saud University

Selection of Compaction Equipment

- The proper selection of compaction equipment is an important factor in obtaining the required soil density with a minimum expenditure of time and effort.
- The chart in Figure 5-10 provides a rough guide to the selection of compaction equipment based on soil type.

FIGURE 5-10: Compaction equipment selection guide.

Material	Steel wheel	Pneumatic	Vibratory	Tamping foot	Grid
Rock	•	0	•	۲	•
Gravel, clean or silty	•	•	•	•	•
Gravel, clayey	۲	•	•	٠	•
Sand, clean or silty	0	0	•	0	•
Sand, clayey silt	0	•	•	٠	0
Clay, sandy or silty	0		•	•	0
Clay, heavy	0	•	•		0

Recommended

Acceptable Marginal