PHYSICS 507
$4^{\text {th }}$ HOMEWORK-Solutions

Prof. V. Lempesis

Hand in: Wednesday 28 $^{\text {th }}$ of March 2020, time: 23:59

1. The potential of the dipole shown in the figure at any point is given by (spherical coordinates):

$$
V_{d i p}=\frac{\hat{\mathbf{r}} \cdot \mathbf{p}}{4 \pi \varepsilon_{0} r^{2}}=\frac{p \cos \theta}{4 \pi \varepsilon_{0} r^{2}}
$$

Find the electric field (spherical coordinates).
(5 marks)

2. Two point charges, $3 q$ and $-q$ by a distance a. For each of the arrangements shown in the figure find (i) the monopole moment, (ii) the dipole moment, and (iii) the approximate potential (in spherical coordinates) at large r (include both monopole and dipole contributions). (Hint: read carefully pages 149 and 150 of our textbook)

(a)

(b)
3. Consider an electric charge q placed on the z-axis at $z=a$ as shown in figure. Express the potential at a point in terms of the spherical polar coordinates r and θ (consider $r>a$).
Hint: you will need the relation $\left(1-2 x t+t^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} P_{n}(x) t^{n} \quad(|t|<1)$. Where $P_{n}(x)$ are the Legendre Polynomials.

