Estimation of Serum Creatinine, Urine Creatinine and Creatinine Clearance

-Kidney functions:

The kidneys serve three essential functions:

- 1. They function as filters, removing metabolic products and toxins from the blood and excreting them through the urine.
- 2. They regulate the body's fluid status, electrolyte balance, and acid-base balance.
- **3.** The kidneys produce or activate hormones that are involved in erythrogenesis, Ca²⁺ metabolism, and the regulation of blood pressure and blood flow.

-Renal function tests (RFT):

- Are used to detect the presence of **renal diseases** and assess their progress.
- The most widely used test is to measure the <u>glomerular filtration rate (GFR)</u>, that is, the rate of filtrate formation by the kidneys.

-Glomerular Filtration Rate (GFR):

- Under normal conditions, approximately 625 mL of plasma flow through the kidneys each minute and the volume of plasma **filtered** is 125 ml/ min which is called the glomerular filtration rate.
- <u>Glomerular filtration rate (GFR)</u>: is the volume of plasma filtered by the kidneys per unit of time.
- GFR is an **important** and the **best** overall measurement in the evaluation of kidney function.

-Measuring the GFR:

- <u>Accurate measurement of the GFR by clearance tests</u> requires determination of the concentration, in plasma and urine, of a substance is known to be **completely filtered** from the plasma at the glomerulus.
- This substance **must not be reabsorbed nor secreted by renal tubules**, broken down, or accumulated by the tubules and must remain at a **constant concentration** in the plasma throughout the period of urine collection.

- Clearance is given by :
 - Clearance = U.V/ P

- →Where:
 - **U**= concentration of any substance in <u>urine</u>.
 - **P**= concentration of the same substance in <u>plasma</u>.
 - **V**= volume of urine (ml/min).

Substances used for Measuring GFR (dearance test)

	Inulin Clearance	Creatinine Clearance	Urea Clearance		
Source	Non-toxic fructose polymer.	End-product of skeletal muscle creatine metabolism.	Endproduct of protein metabolism.		
Advantages	Not reabsorbed or secreted.	An <u>endogenous</u> product of muscle metabolism; near constant production.	An <u>endogenous</u> product of protein.		
Disadvantages	Not made by body; must be injected (exogenous).	Small amount is secreted.	-Partially reabsorbed. -synthesis varies with diet.		

-Creatinine:

- Creatinine is derived from "creatine" which is synthesized in the liver, kidney and pancrease it moves through the circulation and is taken up <u>entirely</u> by muscles.
- Creatinine is a substance that, <u>in health, is easily</u> <u>excreted by the kidney</u>. It is the byproduct of muscle energy metabolism and is produced at a **constant rate according to the muscle mass of the individual**.
- Endogenous creatinine production is **constant** as long as the muscle mass remains constant.

Creatinine clearance :

- A measure of the amount of creatinine eliminated (filtered) from the blood by the kidneys.
- Creatinine is cleared from the body fluids **almost entirely** by glomerular filtration (small amount is secreted by kidney tubules).
- Therefore, the clearance of creatinine can be used to assess <u>GFR.</u>
- Because measurement of creatinine clearance <u>does not</u> require intravenous infusion into the patient, this method is much more widely used than inulin clearance for estimating GFR clinically.
- **Tubules to variable degree secrete creatinine**, which by itself, would lead to an ~20% overestimate of GFR in humans.

Serum Creatinine:

• High plasma creatinine:

Plasma creatinine tends to be higher in subjects with a large muscle mass.

- Other non-renal causes of increased plasma creatinine include the following :
- 1. A high meat intake can cause a temporary increase.
- 2. Transient, small increases may occur after vigorous exercise .

→ If non-renal cause can be excluded, an increased plasma creatinine indicates a fall in GFR (renal disease).

Urine Creatinine:

- Decreased urine creatinine is found in:
- -Advanced renal disease.
- -Renal stenosis.
- Increased urine creatinine is found in:
- -Diabetes mellitus.

-Clinical Implications:

- Decreased creatinine clearance is found in any condition that decreases renal blood flow:
- a. Impaired kidney function.
- b. Shock, dehydration.
- c. Hemorrhage.
- d. Hypothyroidism.
- Increased creatinine clearance is found in:
- a. Pregnancy.
- b. Hyperthyroidism

-Reference Values:

- Urine creatinine :1- 2 g/24h
- Serum creatinine: 0.6–1.2 mg/dL
- Creatinine clearance: 100-130 ml/min/1.73m²

Note:

What 1.73 m2 means?

- Kidney function is proportional to kidney size, which is proportional to body surface area. A of 1.73 m² is the normal mean value for young adults.
- Adjustment for body surface area is necessary when comparing a patient's estimated GFR to normal values or to the levels defining the stages of Chronic kidney disease (CKD).

Stage	Description	GF (ml/ min/1.73m ²)		
I	Kidney lesion with normal or increased GF	<u>></u> 90		
	Kidney lesion with mild GF decrease	60-89		
Ш	Kidney lesion with moderate GF decrease	30-59		
IV	Kidney lesion with marked GF decrease	15-29		
٧	Functional kidney failure or undergoing SRT	< 15		

Chart 2 - Chronic kidney disease staging

SRT- substitutive renal therapy. Source: National Kidney Foundation, 2002.

Practical Part

- 1- To estimate creatinine in serum and urine.
- 2- To calculate creatinine clearance value.

-Principle:

(Jaffe's method):

Colorimetric estimation of creatinine using the <u>alkaline picrate method:</u>

Creatinine + picric acid **Creatinine picrate** (orange)

Absorbance at 520nm

1- Set up a series of 8 test tube as follows:

Chemical	Standard (3mg/dl) (serum)		Test (serum)		Standard (0.75mg/dl) (Urine)		Test (urine)		Blank
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	
Water	1.5 ml	1.5 ml	1.5 ml	1.5 ml	1.5 ml	1.5 ml	1.5 ml	1.5 ml	2 ml
Standard	0.5 ml	0.5 ml	-	-	-	-	-	-	-
(serum)									
Serum Sample	-	-	0.5 ml	0.5 ml	-	-	-	-	-
Standard					0.5 ml	0.5 ml			
(Urine)	-	-	-	-	0.3 III	0.3 IIII	-	-	-
Urine Sample	-	-	-	-	-	-	0.5 ml	0.5 ml	-
Picric acid	6 ml	6 ml	6 ml	6 ml	6 ml	6 ml	6 ml	6 ml	6 ml

16

2-Immerse the Tubes carefully in the boiling water bath for 40 seconds.

- 4- Pipette 0.6 ml of NaOH to all tube.
- 5- Let the tubes stand for 20 min.
- 6- Read the absorbance at 520 nm.

-Results:

Tube	Standard (serum)		Test (serum)		Standard (urine)		Test(Urine)	
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)
Absorbance at 520 nm								
Average(Mean of Absorbance)								

-Calculation:

Patient information: 24h urine volume = 100ml, gender: women, body surface: 1.6m², DF=100. <u>1-Serum creatinine =</u>

(Mean Absorbance of serum test ÷ Mean Absorbance of Standard) X concentration of Serum standard = mg / dl

<u>2-Urine creatinine =</u>

(Mean Absorbance of Urine test \div Mean Absorbance of Standard) X concentration of Urine standard X DF= mg / dl (To compare with normal range, convert from mg/dl to g/24 h)

3- Creatinine Clearance :

=U.V/P

= [(Urinary creatinine (mg/dl)) / (plasmac creatinine (mg/dl))] x Urine volume(ml/min) = B

B -----> 1.6 m² (person surface area)

? -----> 1.73 m^2

-Corrected for surface area = $\dots ml/min/1.73 m^2$

-Example:

Find the Creatinine Clearance if you know that the Urine creatinine U = 488 mg/dl, Serum creatinine P= 2.32 mg/dl, Volume of urine in 24 h =100 ml and A "surface area"=1.6 m² ?

 \rightarrow Creatinine Clearance: = U.V/P

= $(488 \text{ mg/dl} \div 2.32 \text{ mg/dl}) \times (100 \div 1440^*) = 14.6 \text{ ml/min}$

14.6 ml/ min in 1.6 m2, find the creatinine clearance for 1,73 m2 surface area :

=(14.6 ×1.73)÷1.6= 15.8 ml /min/1.73m2

-----OR------

 \rightarrow Creatinine Clearance: = (UXVX1.73)/(PX1440XA)

= $(488 \text{ mg/dl} \times 100 \times 1.73)/(2.32 \times 1440 \times 1.6)$

= <u>15.8 ml/min /1.73m²</u>

-Discussion:

- Comment on the concentration of <u>creatinine in serum.</u>
- Comment on the concentration of <u>creatinine in urine</u>.
- Comment on the value of <u>Creatinine Clearance</u>.

-Home work:

A man aged 40 years with surface area of 1.8m2 has a serum creatinine of 6 mg/dl. A 24 h urine of 2100 ml is collected and the creatinine concentration found to be 450 mg/dl.

• Calculate the Creatinine Clearance ?

-References:

- http://www.nlm.nih.gov/medlineplus/ency/article/003435.htm
- http://www.mayoclinicproceedings.org/article/S0025-6196(11)60609-5/fulltext
- Lecture Notes: Clinical Biochemistry Geoffrey Beckett, Simon W. Walker, Peter Rae.
- A Manual of Laboratory and Diagnostic Tests ,By Frances T Fischbach RN, BSN, MSN By Lippincott Williams & Wilkins Publishers.