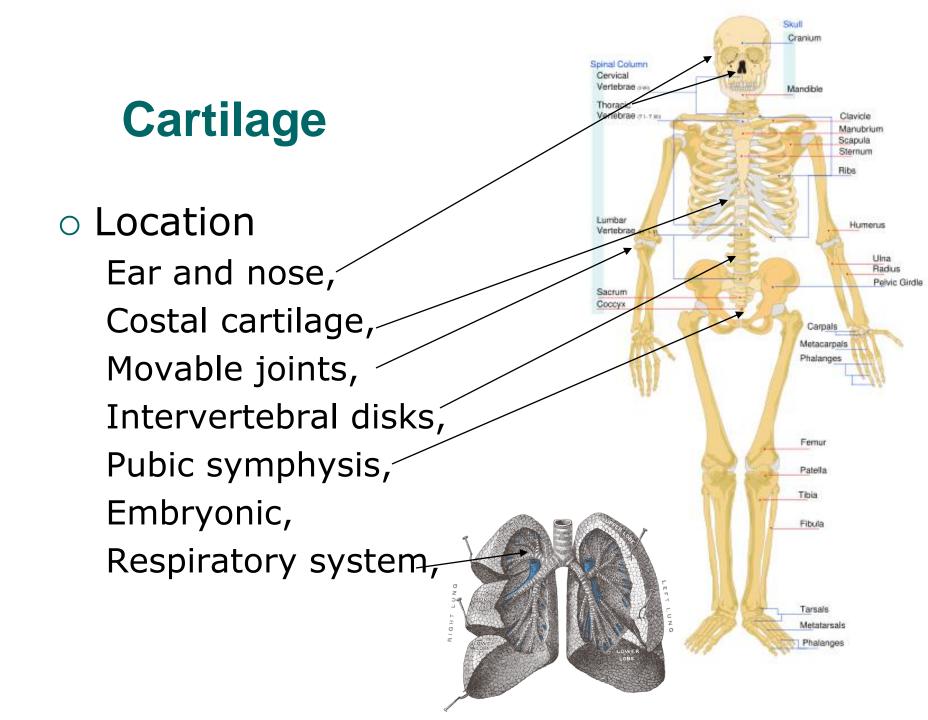
BCH 450 Biochemistry of Specialized Tissues


III. Cartilage, Bone & Teeth Tissue

Types of Connective Tissue Found in the Skeletal System

- Cartilage
- Bone

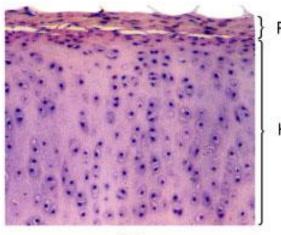
Each of these connective tissue types consists of:

- 1. living cells,
- 2. nonliving intercellular protein fibers,
- 3. an amorphous (shapeless) ground substance

Cartilage Tissue

Specialized Connective Tissue

- Chondrocytes in lacunae
- Solid ground substance and fibers
- Avascular
- No nerves
- Perichondrium
- 60-80% water resilient


Supporting connective tissues

• Cartilage and bone support the rest of the body

• Cartilage

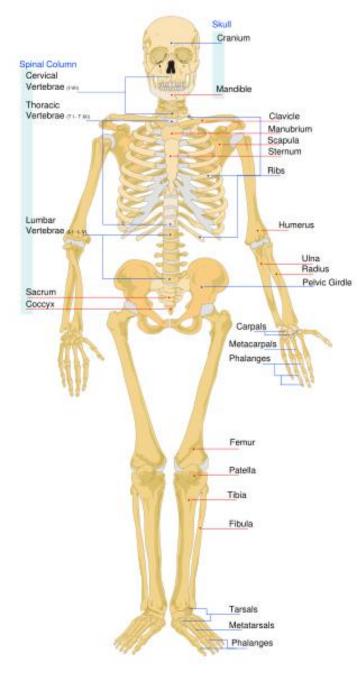
- Matrix is a firm gel containing chondroitin sulfate
- Cells are called chondrocytes
- Cells occupy small chambers called lacunae
- There are three types:
- 1- hyaline 2- elastic 3- fibrocartilage

The Perichondrium and Types of Cartilage

(a)

Perichondrium

Hyaline cartilage

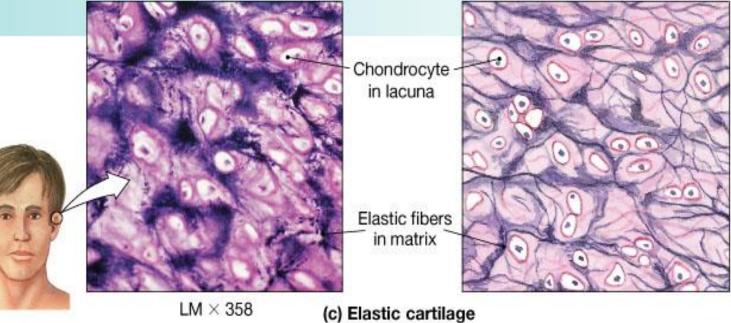

Hyaline Cartilage

(4)	27 D.	
HYALINE CARTILAGE		
LOCATIONS: Between tips of ribs and bones of sternum; covering bone		Chondrocytes
joints; supporting larynx (voice box), trachea, and beschinf rontong part or nasal septum		
FUNCTIONS: Provides stiff but somewhat	8 . 80 - ³	Matrix Matrix
flexible support; reduces friction between been uony surfaces	LM × 500	(b) Hyaline catilage

Hyaline Cartilage

Most abundant

- Locations
 Joints
 Trachea
 Costal cartilages
- Network of collagen fibers

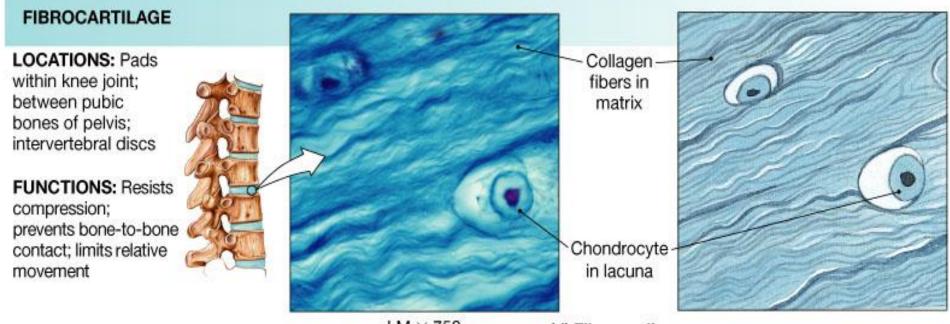

The Perichondrium and Types of Cartilage

Elastic Cartilage

ELASTIC CARTILAGE

LOCATIONS: Auricle of external ear; epiglottis; auditory canal; cuneiform cartilages of larynx

FUNCTIONS: Provides support, but tolerates distortion without damage and returns to original shape



Elastic cartilage

Contains elastic fibers
 Location
 External ear
 Epiglottis

The Perichondrium and Types of Cartilage

Fibro Cartilage

LM imes 750

(d) Fibrocartilage

Fibro cartilages

 Bundles of collagen fibers in rows
 Locations: Intervertebral disks Pubic symphysis Menisci

Cartilage: Function

- articular (or hyaline) cartilage covers bone surfaces within the joint capsule
- basic functions:
 - lubrication
 - prevents wear
 - despite common belief does not serve as a "shock absorber"
 - very thin
 - capacity negligible compared to muscles and bones

Cartilage: Composition

- water contains dissolved inorganic salts
- tissues with high proteoglycan content has
 - high water content
 - low hydraulic permeability
 - high compressive stress
 - damage to proteoglycans will result in increased water mobility and impaired mechanical function

• Split line patterns (preferred collagen fiber orientation)

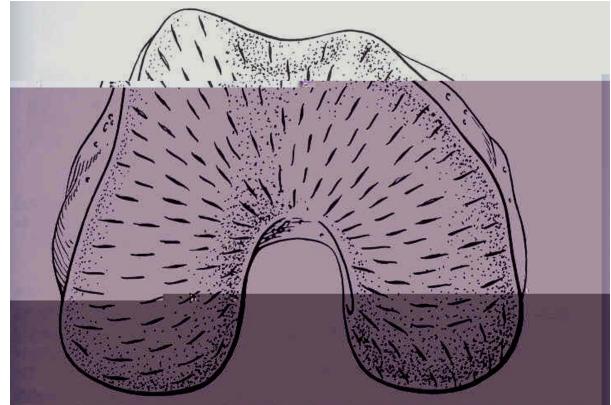
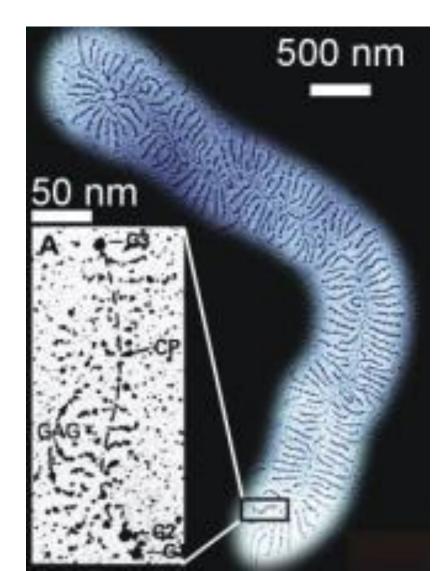


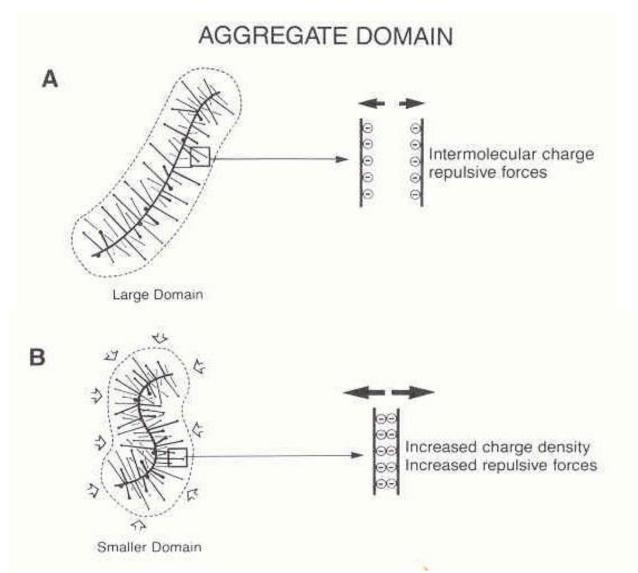
Figure 1. Split-lines on the surface of the femoral condyles showing distinct and consistent patterns.

• Collagen orientation

- parallel to the surface on the superficial layer
- oblique in the middle layer
- perpendicular to the surface in the deep zone

• Proteoglycan content


 increases from surface till the middle zone and diminishes towards the deep zone


o Water

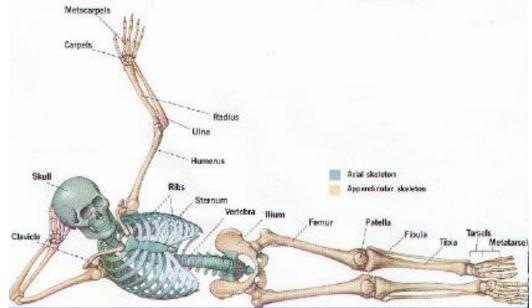
- proteoglycans can hold water up to 50 times their weight
- 70% of the water is bound to proteoglycans
- remaining 30% bound to collagen
- inorganic ions such as Ca, Na, Cl and K are dissolved
 - balance fixed charges on proteoglycans and generate swelling pressure

- proteoglycan-proteoglycan interactions
 - aggregation
 - entropically favored
 - cations are attracted to maintain electroneutrality resulting in osmotic swelling pressure (0.35 MPa)
 - negative charges on the GAG chains exert electrostatic repulsive forces on one another

Aggregated Proteglycans

Bone

Definition


- •Connective tissue in which the intercellular matrix has been impregnated with inorganic calcium salts
- •It has great tensile and compressible strength but is light enough to be moved by coordinated muscle contractions.

Composition

It contains two types of substances. a- organic matter b- inorganic salts.

Bone Function

- Support body weight
- Protect soft organs (Skull)
- Movement at joints
- Storage of Ca⁺⁺ and PO₄⁺⁺⁺
- Hematopoiesis (Blood cell formation)

Bone Composition

- 35% cells,
- fibers (collagen),
- ground substance
- 65% mineral salts mainly calcium phosphate precipitated around collagen fibers

Types of Bone

- Cancellous (Spongy) bone
 - Found in the interior of bones
 - Composed of trabeculae, or spicules, of bone that form a lattice-like pattern
- Compact (cortical) bone
 - Forms the outer shell of a bone
 - Has a densely packed calcified intercellular matrix that makes it more rigid than cancellous bone

Types of Bone Cells

- Osteogenic cells
- Osteoblasts (Bone forming cells)
- Osteocytes (Mature bone cell)
- Osteoclasts (Large cells that break down or resorbe bone matrix)

Bone formation

- Osteogenesis development of the skeleton and growth through adolescence (~18 females, ~21 males)
- Osteoblasts secrete osteoid
- Osteoid is miniralized (calcium phosphate precipitates)
- Osteoblasts become osteocytes
- Forms woven bone (immature)
- Periosteum formed
- Mature lamellar bone formed on surface

Classification of Bones

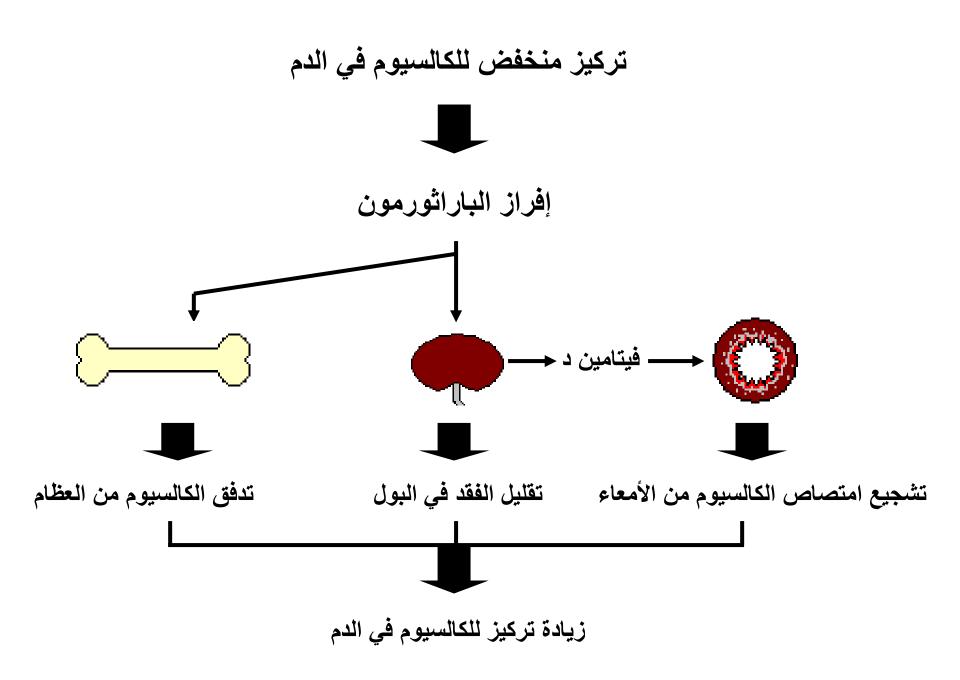
- Long bones
 - Found in the upper and lower extremities
- Short bones
 - Irregularly shaped bone located in the ankle and the wrist
- Flat bones
 - Composed of a layer of spongy bone between two layers of compact bone
 - Found in areas such as the skull and rib cage

Bone Growth

• Regulated by:

- Growth hormone
- Thyroid hormone
- Sex hormones
- Vitamins

Hormones


- It is chemicals produced by the endocrine glands and secreted directly into the bloodstream to their target organs to control the activity of that organ.
- •It can stimulate cartilage formation, Vitamin D production, cause the release of $Ca^{2+} & PO_4^{3+}$ from bone, and sex hormones play a role in the termination of long bone growth
 - •Estrogen: rapid and early growth
 - •Androgens: later, slower growth

Hormonal Mechanism

- Rising blood Ca²⁺ levels trigger the thyroid to release calcitonin
- Calcitonin stimulates calcium salt deposite in the bone
- Falling blood Ca²⁺ levels signal the parathyroid glands to release Parathyroid hormone (PTH) PTH signals osteoclasts to degrade bone matrix and release Ca²⁺ into the blood

Action of Parathyroid Hormone

- It increases intestinal absorption of calcium
- It increases intestinal absorption of Phosphate
- It decreases renal excretion of calcium
- It increases renal excretion of phosphate
- It increases bone resorption
- It decreases bone formation
- Promptly increases serum calcium levels
- It prevents increase in serum phosphate levels

Action of Calcitonin

- It increases renal excretion of calcium
- It increases renal excretion of phosphate
- It decreases bone resorption
- It decreases serum calcium levels with pharmacologic doses
- It decreases serum phosphate levels with pharmacologic doses

Action of Vitamin D

- It increases intestinal absorption of calcium
- It increases intestinal absorption of Phosphate
- It increases renal excretion of phosphate

Vitamin D

•7-dehydrocholesterol located in the skin:

It is formed in the presence of ultraviolet light
Becomes Vit. D3 (cholecalciferol) in liver,
Calcidiol in kidney

Deficiency:

Osteomalacia is bone degeneration (similar to rickets) in the elderly, who stay out of sun.
Rickets is a softening and weakening of

childrens' bones

Vitamin C (ascorbic acid):

Lack of vitamin C leads to poor structure, less effective support, swollen & painful connective tissues. Wounds heal poorly (scar tissue is rich in collagen fibers). Gums bleed as connective tissue around teeth weakens

Scurvy is the vitamin C deficiency disease

Vitamin A

- •Retinol easiest for the body to use. Found in animal foods (liver, eggs and fatty fish).
- Beta-carotene is a precursor for vitamin A.
 The body needs to convert it to retinol or vitamin A for use.
- •It is found in plant foods (orange and dark green veggies: carrots, sweet potatoes, mangos and kale).

Vitamin A

- •The body stores both retinol and beta-carotene in the liver, drawing on this store whenever more vitamin A is needed.
- •It stimulates osteoblast activity, needed for cell division.
- •*Too much* vitamin A linked to bone loss and increased risk of hip fracture.
- •Excess vitamin A triggers an increase in osteoclasts and it may also interfere with vitamin

Vitamin B-12

- •It is found in animal products (meat, shellfish, milk, cheese and eggs)
- •It is important for blood formation and clotting
- •Low levels is linked to loss of bone mass
- •However deficiency is uncommon in younger women who are also at less risk of osteoporosis

Vitamin K

It is important for protein synthesis in bone
Low intake of Vitamin K is associated with osteopenia (reduction of bone mass) and osteoporotic fracture (only in women?)