College of Computer and Information Sciences

Computer Science Department

CSC 340: Programming Language and Compilation Three Address Code and Code Generating

Q1. Translate each of the following arithmetic expressions into a) Quadruples b) Triples.

1.
$$a + -(b+c)$$

2.
$$Y * Z + 7 * 6$$

$$3. Y + Z * W$$

1. a + -(b+c)					
	Triples				
	op	Arg1	Arg2		
(0)	+	b	С		
(1)	minus	(0)			
(2)	+	a	(1)		

1. a + -(b+c)				
Quadruplets				
	op	Arg1	Arg2	result
(0)	+	b	c	t0
(1)	minus	t0		t1
(2)	+	a	t1	t2

2. Y * Z + 7 * 6						
Triples						
	op Arg1 Arg2					
(0)	*	Y	Z			
(1)	*	6	7			
(2)	+	(0)	(1)			
2. Y * Z + 7 * 6						

Quadruplets				
	op	Arg1	Arg2	result
(0)	*	Y	Z	t0
(1)	*	7	6	t1
(2)	+	t@	t1 1	

College of Computer and Information Sciences

Computer Science Department

CSC 340: Programming Language and Compilation Three Address Code and Code Generating

3. Y+Z*W					
	Triples				
	op	Arg1	Arg2		
(0)	*	Z	\mathbf{W}		
(1)	+	Y	(0)		

3. Y+Z*W				
Quadruplets				
	op	Arg1	Arg2	result
(0)	*	Z	W	t0
(1)	+	Y	t0	t1

Q2. How many labels are needed to be created in converting each of the following code segments to machine code?

```
1. if (X > 7)
    { y=1;
    printf("...");
    else
     { y=2;
    printf("...");
```

Two Labels.

2. X=10; printf("....");

Zero Labels.

3. While (Y<X) if (X > 7)**{...**}

Three Labels.

College of Computer and Information Sciences

Computer Science Department

CSC 340: Programming Language and Compilation Three Address Code and Code Generating


```
while(Y<X)
{...
 while(YY==XX)
          { ....}
 }
Four Labels
```

O3.

The following figure is a matrix elements initialization code segment.

- a) Translate the program into three-address statements (Triplets). Assume the matrix entries are numbers that require 8 bytes, and that matrices are stored in row-major order.
- b) Construct the flow graph for your code from (a).
- c) Identify the loops in your flow graph from (b).

Solutions:

The Address equation in 2D matrix in row-major order is: indx=(clm*i+j)*(data-type size in byte)

Example: Array C: r=2 c=5

Complete it accordingly

King Saud University College of Computer and Information Sciences Computer Science Department CSC 340: Programming Language and Compilation Three Address Code and Code Generating

College of Computer and Information Sciences Computer Science Department

- c) The loops
 - o {B2, B3, B4, B6}
 - o {B4, B5}