King Saud University
 College of Computer and Information Sciences
 Computer Science Department
 CSC 340: Programming Language and Compilation
 Three Address Code and Code Generating
 ä Ω ol ageus King SaudUniversity

Q1. Translate each of the following arithmetic expressions into a) Quadruples b) Triples.

1. $\mathbf{a}+-(b+c)$
2. $Y * Z+7 * 6$
3. $\mathbf{Y}+\mathrm{Z} * \mathbf{W}$

Q2. How many labels are needed to be created in converting each of the following code segments to machine code?

1. if ($X>7$)
\{ $\mathrm{y}=1$;
printf('...'");
\}
else
\{ $\mathrm{y}=\mathbf{2}$;
printf('...'");
\}
2.

$\mathrm{X}=10$;
printf('"....'');
3. While ($\mathbf{Y}<\mathbf{X}$)
\{ if ($\mathrm{X}>7$)

.....
\}
4. while ($\mathbf{Y}<\mathbf{X}$)
\{... while($\mathbf{Y Y}==\mathbf{X X}$) \{\}
\}

King Saud University
 College of Computer and Information Sciences
 Computer Science Department
 CSC 340: Programming Language and Compilation
 Three Address Code and Code Generating

Q3.
The following figure is a matrix elements initialization code segment.
a) Translate the program into three-address statements (Triplets). Assume the matrix entries are numbers that require 8 bytes, and that matrices are stored in row-major order.
b) Construct the flow graph for your code from (a).
c) Identify the loops in your flow graph from (b).

$$
\begin{aligned}
& \text { for }(\mathbf{i}=\mathbf{O} ; \mathbf{i}<\mathbf{n} ; \mathbf{i}++) \\
& \text { for }(\mathbf{j}=\mathbf{O} ; \mathbf{j}<\mathbf{n} ; \mathbf{j}++) \\
& \mathbf{c}[\mathbf{i}][\mathbf{j}]=0.0 ;
\end{aligned}
$$

