King Saud University
 College of Computer and Information Sciences
 Computer Science Department

CSC 340: Programming Language and Compilation Exercises: Three Address Code and Code Generation

1. Exercises 8.2.1 (page 516) [1]

Generate code for the following three-address statements assuming all variables are stored in memory locations.
a) $x=1$
b) $x=a$
c) $x=a+1$
d) $\mathbf{x}=\mathrm{a}+\mathrm{b}$
e) The two statements

- $\mathbf{x}=\mathbf{b}^{*} \mathbf{c}$
- $\mathbf{y}=\mathbf{a}+\mathbf{x}$

2. Exercise 8.2.3 (Page 517) [1]

Generate code for the following three-address sequence assuming that p and q are in memory locations:

$$
\begin{aligned}
& y=* q \\
& q=q+4 \\
& * p=y \\
& p=p+4
\end{aligned}
$$

3. Exercise 8.2.4 (Page 517) [1]

Generate code for the following sequence assuming that x, y, and z are in memory locations:
if $\mathrm{x}<\mathrm{y}$ goto L 1
$\mathrm{z}=0$
goto L2
L1: $\mathrm{z}=1$

King Saud University
 College of Computer and Information Sciences Computer Science Department

CSC 340: Programming Language and Compilation Exercises: Three Address Code and Code Generation

4. Exercise 8.4.1 (Page 531) [1]

Figure 8.10 is a simple matrix-multiplication program.
a) Translate the program into three-address statements of the type we have been using in this section. Assume the matrix entries are numbers that require 8 bytes, and that matrices are stored in row-major order.
b) Construct the flow graph for your code from (a).
c) Identify the loops in your flow graph from (b).
for ($\mathbf{i}=\mathbf{O} ; \mathbf{i}<\mathbf{n} ; \mathbf{i}++$)
for ($\mathbf{j}=\mathbf{O} ; \mathbf{j}<\mathbf{n} ; \mathbf{j}++$)
$\mathrm{c}[\mathrm{i}][\mathrm{j}]=0.0$;
for ($\mathbf{i}=\mathbf{O} ; \mathbf{i}<\mathbf{n} ; \mathbf{i}++$)
for ($\mathbf{j}=\mathbf{O} ; \mathbf{j}<\mathbf{n} ; \mathbf{j}++$)
for ($k=\mathbf{O} ; \mathbf{k}<\mathbf{n} ; \mathbf{k + +}$)

Figure 8.10: A matrix-multiplication algorithm
[1] Book: "Compilers Principles, techniques, \& tools", Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman

