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• Counting microstates of combined systems

• Volume exchange between systems

• Definition of Entropy and its role in equilibrium

Lecture 4

Entropy and Exchange between systems  



Review: Some definitions

State: The details of a particular particle, e.g., what volume bin it is 
in, the orientation of its spin, what velocity it has, etc. 

Microstate: The configuration of states for a set of particles, e.g., 
which bin each particle is in, the specific orientation of the spins  --

, etc. 

Macrostate: The collection of all microstates that satisfy some 
constraint, e.g., 

o all the particles on the left side 

o all the particles in any bin

o 1/3 of the particles with their spins “up”

o no particles as a gas (all as liquid)  



ACT 1: Microstates

Consider 10 coins (labeled by their position).

Which microstate is least likely?

a. HHHHH HHHHH

b. HHHHH TTTTT

c. HTHTH THTHT

d. HHTHT TTHHH

e. TTHTH HHTTH



ACT 1: Microstates

Consider 10 coins (labeled by their position).

Which microstate is least likely?

a. HHHHH HHHHH

b. HHHHH TTTTT

c. HTHTH THTHT

d. HHTHT TTHHH

e. TTHTH HHTTH

Every microstate is equally likely! (This assumes the system 
is in equilibrium – it has had a chance to reach every 
microstate).

If instead we ask which macrostate is least likely, it is the one 

with all the coins ‘heads’ (or ‘tails’).  Why is that that least 

likely macrostate? Because there’s only one microstate that 

gives it.



Basic reminders and new definition

When an isolated system can explore some number W of microstates,  
they each become equally likely.

So the probability that you find some macrostate A is just 
the fraction of all the microstates that look like A.

P(A) = W(A) /W, 

To keep track of the large numbers of states, 

we define Entropy

The most likely macrostate in equilibrium has the biggest net entropy 

S. We call that the “equilibrium state” even though there are really 

small fluctuations around it. If the system is BIG (many particles), the 

relative size of these fluctuations is negligible.



Last lecture we considered binomial (two-state) systems:

Now we will study systems that occupy more than two 
states.  This “bin problem” is directly related to particles in 
gases and solids.

Coins land with either heads or tails, electronic spins have magnetic 

moments m pointing either along or counter to an applied field, 

and 1-dimensional drunks can step a distance either left or right.  

We defined the terms “microstate” and “macrostate” to describe 

the spins, and by analogy the other systems:

System     One particular Microstate Macrostate (usually what we measure) 
 

Spins     Total magnetic moment =  (Nup – Ndown)  
 
Coins   HTTHTHHHTH  Net winnings = (Nheads – Ntails) 
 
Steps   RLLRLRRRLR  Total distance traveled =     (Mright – Mleft) 
           (N = # drunks, or # particles diffusing)      

x

Counting Microstates (revisited)



Counting arrangements of objects

Problem #1:  Distinct objects in bins with unlimited occupancy.

How many ways can you arrange 2 distinct objects (A and B) in 3 bins?

A B

# arrangements   # “microstates” =   W    =

Now throw the 2 objects up and let them land randomly.

• What is the probability of getting a specified microstate?      

• How many microstates for N different objects in M bins?        W =

• Find W for two identical objects (A and A) in 3 bins. W =

Work space:
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ACT 2: Effect of indistinguishability

Consider 2 particles in a box with two bins (multiple 

occupancy allowed). Compare the total number of 

microstates Wd if the particles are distinguishable, 

with the total number of microstates Wi if the 

particles are indistinguishable.

a. Wi < Wd b. Wi = Wd c. Wi > Wd



ACT 2: Effect of indistinguishability -- Solution

Consider 2 particles in a box with two bins (multiple 

occupancy allowed). Compare the total number of 

microstates Wd if the particles are distinguishable, 

with the total number of microstates Wi if the 

particles are indistinguishable.

a. Wi < Wd b. Wi = Wd c. Wi > Wd

For the distinguishable particles (“a” and “b”), the states are:

|ab|0| |0|ab| |a|b| |b|a|

This is a general result – indistinguishable particles 

typically have fewer microstates.

For the indistinguishable particles (“a” and “a”), the states are:

|aa|0| |0|aa| |a|a| 



Counting arrangements of objects

Problem #1:  Distinct objects in bins with unlimited occupancy.

How many ways can you arrange 2 distinct objects (A and B) in 3 bins?

A B A      B                       A              B

B      A A B A      B

B              A                        B       A                              A B

# arrangements   # “microstates” =   W    =  

Now throw the 2 objects up and let them land randomly.

• What is the probability of getting a specified microstate?      

• How many microstates for N different objects in M bins?        W =

• Find W for two identical objects (A and A) in 3 bins. W =  

Work space:
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Why do we consider IDENTICAL PARTICLES?

NATURE IS COMPOSED OF CLASSES OF IDENTICAL PARTICLES

All atoms of a given type are indistinguishable.

All molecules of a given type are indistinguishable.

(Indistinguishable)

But specifying ‘type’ you have to be complete, including all the isotopes,

remembering spin states, etc.



Single occupancy

Problem # 2:  Distinct objects in single-occupancy bins.

How many ways can you arrange 2 distinct objects (A, B) in 4 bins?

• What is W for 3 objects (A, B, C) in 4 bins? W =

• How many ways can you arrange N different objects in M bins ?



Single occupancy

Problem # 2:  Distinct objects in single-occupancy bins.

How many ways can you arrange 2 distinct objects (A, B) in 4 bins?

Solution:  There are 4 possible places for A:

A                           A                           A                          A

Each of these has 3 possible places for B.

Therefore, the total number of microstates  =  W =

• What is W for 3 objects (A, B, C) in 4 bins? W =

• How many ways can you arrange N different objects in M bins?



Single occupancy

Problem # 2:  Distinct objects in single-occupancy bins.

How many ways can you arrange 2 distinct objects (A, B) in 4 bins?

Solution:  There are 4 possible places for A:

A                           A                           A                          A

Each of these has 3 possible places for B.

Therefore, the total number of microstates  =  W =  4 x 3  =  12

• What is W for 3 objects (A, B, C) in 4 bins? W = 4 x 3 x 2 = 24

(each of the 3 possible places for B had 2 spots for C)

• How many ways can you arrange N different objects in M bins?

Answer: [Convince yourself.]
)!(

!

NM

M


W



Consequence of Identical particles: single occupancy

Imagine 4 distinct particles arranged in 10 single-occupancy bins.  One 
possible arrangement (microstate):

A               B               C    D

Switching C and D gives a different state.

• If we change to 4 identical particles, we have over-counted the 

number of microstates.  By what factor is W reduced?

A               A               A    A

Switching two A’s gives the same state, so: divide by N! = 4!

Explanation: How many ways can ABCD be permuted?
A can be in 4 positions: Axxx xAxx xxAx xxxA

Each of these has 3 possibilities for B:             Bxx xBx    xxB

Each of these has 2 possibilities for C: Cx    xC

Each of these has only one spot left for D.                     D

Total number of permutations   =   4 x 3 x 2 x 1   =   4!   =   24

W    5040 / 24    210

5040!6/!10)!/(! W NMM

So # microstates for Identical Particles:

N objects ; M bins



Occupancy Rules and Particle Types

The possible occupancy rules for bins are 

unlimited occupancy

single occupancy

The possible particle types are

distinct  =  distinguishable

identical  =  indistinguishable

Note that for N<<M, the occupancy rule doesn’t matter
because there are relatively few multiple occupancies.

N objects ; M bins

Try M=10, N=2:

MN = 102 = 100

!
Predict:    

( )!

10! 10 9 8 1
10 9 90 100

8! 8 7 1




  
    

 

NM
M

M N

(O.K.)

(only 10 multiple 

occupancies)

4 cases total



Distinguishable

Identical

Summary of Bin Statistics

For gases we will be concerned primarily with the low-density limit
(N << M). In this limit, we need only:

N(N M 1)! M! M
                                         

(M 1)!N! (M N)!N! N!

 

 

Unlimited Occupancy       Single Occupancy       Dilute gas

N NM!
M                                               M

(M N)!

         for distinguishable particles

        for indistinguishable particles
!

N

N

M

M

N

W 

W 

W =

M = # bins

N = # objects
N << M

Our 1/N! for indistinguishable single-occupancy ~works for multiple–

occupancy gases too because N<<M means multiple occupancy is rare.



Distributions of Gas molecules

We apply counting to real particles

Consider gas particles in a container: Volume V:

Let’s say that in each volume V, the 
number of different states M 
available to a particle is 
proportional to V, as you would 
correctly expect. 
So we write:

M= nTV. 

nT here just means the number of 
states per unit volume for a 
particle. (Because particles with 
different velocities in the same 
volume count as different states, 
this number depends on T.)

Begin with distinguishable particles   

and with # bins  >>  # particles 

(M=nTV >> N), i.e., dilute system

Simplest math:

Why not an uncountable infinity

of states? Quantum mechanics!

( Dx Dp > )

N particles; M states



Total number of states for 2 distinguishable particles:

W =   M . M   =   M2 = 10,000

Total number of states for N distinguishable particles:

W =   MN 

( =  100N =   102N = 1020 just for 10 particles)

If there are M states (e.g, M = 100), probability that the particle will be 

in a particular state is just 1/M: = 1%         

N particles; M states



ACT 3: Counting states

Consider N particles in a box of volume V.   This has a 

total number of states (e.g., cells) M, and a total number 

of microstates W =   MN.  If we double the volume (2V), 

what is the new number of microstates W’?

a. W’  W b. W’  2 W c. W’  2NW d. W’  W2



ACT 3: Counting states -- Solution

Consider N particles in a box of volume V.   This has a 

total number of states (e.g., cells) M, and a total number 

of microstates W =   MN.  If we double the volume (2V), 

what is the new number of microstates W’?

a. W’  W b. W’  2 W c. W’  2NW d. W’  W2

If you double the volume, M doubles. 

W’ = (2M)N = 2N MN = 2NW

Let’s say the volume only increases by 1%: 

W’ = (1.01 M)N = 1.01N W

If N = 1023 (e.g., gas in a room), this increase in the number of 

states is enormous:  (1 + 0.01)N will overflow your calculator.



Counting states for two combined systems –
the concept of equilibrium

• Divide a box into two parts, volumes V1 and V2 .     V1 +  V2 =  V

• Put N1 particles in V1 and N2 particles in V2 .          N = N1 + N2

• The position of the partition (or value of V1) defines a “macrostate”. 

V1

N1

V2 =  V  - V1

N2 = N  - N1

1 2 1 2 1 2

1 2 1 2 1 2( )
N N N N N NN

T T Tn n V V n V VW  W W     

Total number of microstates in the macrostate with volume V1 :

W1 =  # microstates in left side  =

W2 =  # microstates in right side =

1

2

1

2

( )

( )

N

T

N

T

n V

n V



Equilibrium Volume Exchange

We now allow the partition to move (the macrostate to change) and ask, 

“What is the most probable macrostate? (most likely V1?)” .

(For big systems the average V1 and the most likely V1 are nearly the same.)

Answer: Find V1 that maximizes W .  That will be the most probable V1 .

Shortcut: Maximize  ln(W) ln(W1)+ ln(W2)
------ a sum rather than a product:

2N

1
1N

1
2N

2
1N

1 )VV(V)constant(VV)constant( W

Condition for maximum ln(W)

V1 V - V1  V = total volume

0
dV

)ln(d

constant)VVln(N)Vln(N)ln(

1

1211


W

W



Result

2 1 2 1

2 1

2

1 1 1 2 1 2V V V V

1 2

1 2 1 2V V

dVd ln( ) ln( ) ln( ) ln( ) ln( )
0

dV V dV V V V

N Nln( ) ln( )

V V V V

       W  W  W  W  W
           

          

    W  W
      

    

Reasonable result: It is 

most likely that the 

gases have equal 

densities, N/V

Given the freedom to move, the partition will  move so that 

is the same on each side.

Then trading V can’t increase net ln(W).
And that’s what gives equal particle densities on each side.

(Recall ideal gas law: p = (N/V) kT

If the two chambers are at the same T, then the partition will move 

to equalize p.)

i

i

ln( )

V

  W
 

 



Entropy
Define a quantity called the Entropy = natural log of the 

number of accessible microstates

Property of system 1    Property of system 2

Why?

Entropy is a state function … determined by the macrostate of the system

Entropy is additive 
much more convenient to maximize.

Combine two systems. Wtot is a product. stot is a sum.



Summary

Total entropy of an isolated system is maximum in equilibrium.

So if two parts (1 and 2) can trade V, equilibrium requires:

(We can compute some entropy changes
exactly – no arbitrary constants.)

For N distinguishable independent gas particles in a volume V:

Remember number for s because we didn’t know how to calculate nT, but 

this tells us how s depends on V.  In particular, for an ideal gas that 

isothermally changes volume from Vi to Vf the entropy change is

General!
So long as systems are big 

enough for the derivative 

to be meaningful



Consider 3 particles (A, B, C) in a two-chamber system 

with 6 single-state cells partitioned by a movable barrier

Take N1=1 (particle A)  and N2=2  (particles B and C).

Count the number of microstates for each side and for the 

whole system as a function of the partition position.

For example, for the partition as shown below, possible states are:

Exercise:  Microstates and Entropy
a case where the numbers are small, and the whole distribution matters, 

the average and the most likely may not be very close

A

A

BC

B C

A

BC
1 particle on left of partition 

and 2 particles on right.  

Allow multiple occupancy.



Worksheet for this problem

2W 21WWW1W

1 52 = 25 25 3.22

2 42 = 16 32

12  = 1

( )Ws lnFix the partition at:

Constraint:  1 particle on left of 

partition and 2 particles on right.  

Allow multiple occupancy.
Average V1 = <V1> =?



Worksheet for this problem

2W 21WWW1W

1 52 = 25 25 3.22

2 42 = 16 32 3.47

3 32 = 9 27 3.30

4 22 = 4 16 2.77

5 12  = 1 5 1.61

( )Ws lnFix the partition at:

Constraint:  1 particle on left of 

partition and 2 particles on right.  

Allow multiple occupancy.
Average V1 = <V1> =



Worksheet for this problem

2W 21WWW1W

1 52 = 25 25 3.22

2 42 = 16 32 3.47

3 32 = 9 27 3.30

4 22 = 4 16 2.77

5 12  = 1 5 1.61

( )Ws lnFix the partition at:

Constraint:  1 particle on left of 

partition and 2 particles on right.  

Allow multiple occupancy.
Average V1 = <V1> =

(1*25+2*32+3*27+4*16+5*5)/(25+32+27+16+5)

= 259/105 = 2.47



Graph of Results
Most probable V1

smost likely = ln(32) = 3.47*

1 2

1 2

1

2

N N

V V

 
  

 

V1

40

30

20

10

0

1     2     3     4    5  dV

W1W2

V1
dV

Letting the partition range over all 5 positions, most likely position occurs when

(*Note:  without this constraint, 

the entropy of this system is    

s = ln(105) = 4.65 )

What is the probability P(2) of finding (V1/ dV) = 2?     

%5.30
105

32

516273225

32
)2(P 






Maximizing the total entropy 

This corresponds roughly to not   s1    s2

Number of bins and particles large  distribution is very sharply 

peaked. (Recall probability distributions for binomial cases.)

• Most likely configuration occurs at maximum

s1  s2

4

3

2

1

0

Most likely 

value of V1

1    2    3    4    5

V1 / dV

s1

s2
4

3

2

1

0

1    2    3    4    5

V1 / dV

If the partition is allowed to move freely among all positions (macrostates):



Lessons from Volume exchange

The number of states of the whole was the product of the 
number of states of the parts.

The log of the total number is the sum of the logs of the numbers 
of the parts.

o We call the ln(number of microstates) the entropy s

For big systems, in equilibrium we almost certainly see 
the macrostate that maximizes total number

o To find it we maximize entropy by maximizing the sum of the 
entropies of the parts.

If parts can exchange volume, in equilibrium each must have the 
same derivative of its entropy with respect to its volume.

o Otherwise volume could shift and increase net entropy

» argument doesn’t rely on the parts being the same at all

We will next use the same principles for systems 
that trade ENERGY

TOT 1 2W  W W

TOT 1 2

ln( )W  s

s  s  s



Probability Pn decreases with increasing En

Home Exercise

For a system of  3 oscillators with U = 3 . e plot:

Pn =  probability that oscillator #1 has energy En = n . e
Pn

1

En
0    1    2    3   x e

Can you state in words why Pn decreases with increasing En?


