King Saud University
College of Sciences
Department of Mathematics

151 Math Exercises

$$
(3,3)
$$

Methods of Proof

"Mathematical Induction"

 (STRONG INDUCTION)Malek Zein AL-Abidin

1440
2018

Strong Induction

STRONG INDUCTION To prove that $P(n)$ is true for all positive integers n, where $P(n)$
is a propositional function, we complete two steps:
BASIS STEP: We verify that the proposition $P(1)$ is true.
INDUCTIVE STEP: We show that the conditional statement
$[P(1) \wedge P(2) \wedge \cdots \wedge P(k)] \rightarrow P(k+1)$ is true for all positive integers k.

Exercises

1. Assume $\left\{a_{n}\right\}_{\mathrm{n}=1}^{\infty}$ is a sequence defined as:

$$
a_{1}=3, a_{2}=6, a_{n}=a_{n-1}+a_{n-2}: \forall n \geq 3
$$

Prove that $3 \mid a_{n}$ for all positive integers n.
Solution: Let $P(n)$ be the proposition, $P(n): 3 \mid a_{n}, \forall n \geq 1 \Rightarrow a_{n}=3 c: c \in \mathbb{N}$ BASIS STEP:

$$
\begin{align*}
& P(1): 3 \mid a_{1}=3 \Rightarrow \therefore P(1) \text { is true } \\
& P(2): 3 \mid a_{2}=6 \Rightarrow \therefore P(2) \text { is true } . \tag{*}
\end{align*}
$$

INDUCTIVE STEP: We assume that $P(1), P(2), \ldots, P(k-2), P(k-1), P(k)$
All are hold for integer $k \geq 2$.
Under this assumption, it must be shown that $P(k+1)$ is also true .

$$
\begin{equation*}
P(k+1): \quad a_{k+1}=a_{k}+a_{k-1} \tag{**}
\end{equation*}
$$

$\because a_{k-1}, a_{k}$ both are true, (from inductive hypothesis *) \Rightarrow

$$
\begin{aligned}
& P(k): 3 \mid a_{k} \Rightarrow a_{k}=3 c_{1}: c_{1} \in \mathbb{N} \\
& P(k-1): 3 \mid a_{k-1} \Rightarrow a_{k-1}=3 c_{2} \quad: c_{2} \in \mathbb{N}
\end{aligned}
$$

$$
a_{k+1}=a_{k}+a_{k-1}=3 c_{1}+3 c_{2}=3\left(c_{1}+c_{2}\right)=3 c
$$

$$
: c=\left(c_{1}+c_{2}\right) \in \mathbb{N}
$$

$$
\therefore a_{k+1}=3 c \Rightarrow 3 \mid a_{k+1} \Rightarrow \therefore \quad P(k+1) \quad \text { is true }
$$

Then $P(n)$ is true for $\forall n \geq 1$.
2. Assume $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence defined as:

$$
a_{1}=8, a_{2}=4, a_{n}=a_{n-1}+a_{n-2}: \forall n \geq 3
$$

Prove that a_{n} is even for all positive integers n. Solution:
3. Assume $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence defined as:

$$
a_{0}=9, a_{1}=15, a_{n}=\frac{a_{n-1} a_{n-2}}{3}+6: \forall n \geq 2
$$

Prove that $3 \mid a_{n}$ for all nonnegative integers n.

Solution:

4. Assume $\left\{b_{n}\right\}_{n=1}^{\infty}$ is a sequence defined as:

$$
b_{1}=1, b_{2}=2, \quad b_{n}=2 b_{n-1}-b_{n-2}: \forall n \geq 3
$$

Prove that $\quad b_{n}=n \quad$ for all positive integers n.

Solution:

5. Assume $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence defined as:

$$
a_{1}=-1, \quad a_{2}=-\frac{1}{2}, \quad a_{3}=-\sqrt{10}, \quad a_{n}=a_{n-1} \cdot a_{n-2} \cdot a_{n-3}: \forall n \geq 4
$$

Prove that $\quad a_{n} \leq 0$ for all positive integers n.
Solution:
6. Assume $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence defined as:

$$
\begin{equation*}
a_{1}=1, a_{2}=5, a_{n+1}=2 a_{n}+3 a_{n-1}: \forall n \geq 2 \tag{*}
\end{equation*}
$$

Prove that $\quad 3^{n} \leq a_{n+1} \leq 2.3^{n}$ for all positive integers n.
Solution: Let $P(n)$ be the proposition , $P(n): 3^{n} \leq a_{n+1} \leq 2.3^{n}, \forall n \geq 1$ BASIS STEP: $\quad P(1): 3^{1} \leq a_{2}=5 \leq 2.3^{1}=6 \Rightarrow \therefore P(1)$ is true

INDUCTIVE STEP: We assume that $P(1), P(2), \ldots, P(k-2), P(k-1), P(k)$
All are hold for integer $k \geq \wedge$.
Under this assumption, it must be shown that $P(k+1)$ is also true .

$$
\begin{equation*}
\operatorname{from}(*) \Rightarrow \quad P(k+1): \quad a_{k+2}=2 a_{k+1}+3 a_{k} \tag{***}
\end{equation*}
$$

$\because a_{k+1}, a_{k}$ both are true, (from inductive hypothesis **) \Rightarrow

$$
\begin{equation*}
P(k): 3^{k} \leq a_{k+1} \leq 2.3^{k} \Rightarrow 2.3^{k} \leq 2 a_{k+1} \leq 4.3^{k} \tag{1}
\end{equation*}
$$

$$
P(k-1): 3^{k-1} \leq a_{k} \leq 2.3^{k-1} \Rightarrow 3.3^{k-1} \leq 3 a_{k} \leq 2.3 .3^{k-1}
$$

تقريرصـائب

$$
\begin{equation*}
3^{k} \leq 3 a_{k} \leq 2.3^{k} \tag{2}
\end{equation*}
$$

$$
\begin{gathered}
\begin{array}{c}
(1)+(2) \\
\substack{\text { by subist.into(***) }}
\end{array} \Rightarrow 2.3^{k}+3^{k} \leq 2 a_{k+1}+3 a_{k} \leq 4.3^{k}+2.3^{k} \\
33^{k} \leq a_{k+2} \leq 63^{k} \\
3^{k+1} \leq a_{k+2} \leq 2.3 .3^{k} \\
3^{k+1} \leq a_{k+2} \leq 23^{k+1} \\
\Rightarrow \quad \\
\\
\therefore P P(k+1) \text { is true } \\
\therefore P(n) \text { is true for } \forall n \geq 1
\end{gathered}
$$

7. Assume $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence defined as:

$$
a_{0}=1, \quad a_{n}=2 a_{n-1}+1: \forall n \geq 1
$$

Prove that $a_{n}=2^{n+1}-1$ for all nonnegative integers n.

Solution:

8. Assume $\left\{a_{n}\right\}_{\mathrm{n}=1}^{\infty}$ is a sequence defined as:

$$
a_{1}=3, \quad a_{2}=9, \quad a_{3}=15, \quad a_{n}=a_{n-1}+a_{n-2}+a_{n-3}: \forall n \geq 4
$$

Prove that 3 divides a_{n} for all positive integers n.

Solution:

9. Assume $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence defined as:

$$
a_{0}=1, a_{1}=1, \quad a_{n}=2 a_{n-1}+a_{n-2}: \forall n \geq 2
$$

Prove that a_{n} is odd for all nonnegative integers n.

Solution:

10. Assume $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence defined as:

$$
\begin{equation*}
a_{0}=0, a_{1}=4, \quad a_{n}=-2 a_{n-1}+3 a_{n-2}: \forall n \geq 2 \tag{*}
\end{equation*}
$$

Prove that $\quad a_{n}=1-(-3)^{n}$ for all nonnegative integers n.

Solution:

11. Assume $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence defined as:

$$
a_{0}=1, \quad a_{1}=2, a_{n}=4 a_{n-1}-3 a_{n-2}: \forall n \geq 2
$$

Prove that $a_{n}=3^{n}-1$ for all nonnegative integers n.

Solution:

12. Assume $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence defined as:

$$
a_{0}=9, a_{1}=15, a_{2}=3 \quad a_{n}=\frac{a_{n-1} a_{n-2} a_{n-3}}{9}+6 \quad: \forall n \geq 3
$$

Prove that $3 \mid a_{n}$ for all nonnegative integers n.

Solution:

13. Assume $\left\{u_{n}\right\}_{n=1}^{\infty}$ is a sequence defined as:

$$
u_{1}=1, u_{2}=2, u_{3}=3, u_{n}=3 u_{n-1}-u_{n-2}-u_{n-3}: \forall n \geq 4
$$

Prove that $\quad u_{n}=n$ for all positive integers n.

Solution:

14. Assume $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence defined as:

$$
a_{1}=1, a_{2}=2, a_{3}=3, \quad a_{n}=\frac{a_{n-1}+a_{n-2}+a_{n-3}}{3}: \forall n \geq 4
$$

Prove that $1 \leq a_{n} \leq 3$ for all positive integers n.

Solution:

15. Assume $\left\{u_{n}\right\}_{n=1}^{\infty}$ is a sequence defined as:

$$
u_{1}=\frac{3}{4}, \quad u_{2}=\frac{8}{13} \quad, \quad u_{n}=\frac{3 u_{n-1}+2 u_{n-2}}{3}: \forall n \geq 3
$$

Prove that $\quad u_{n}<1$ for all positive integers n. Solution:
16. Assume $\left\{u_{n}\right\}_{n=1}^{\infty}$ is a sequence defined as:

$$
u_{1}=2, u_{2}=4 \quad, \quad u_{n}=\frac{2 u_{n-1}+u_{n-2}+8}{3} \quad: \forall n \geq 3
$$

Prove that $u_{n}=2 n \quad$ for all positive integers n.
Solution:
17. Assume $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence defined as:

$$
a_{0}=1, \quad a_{1}=2, \quad a_{2}=3, \quad a_{n}=a_{n-1}+a_{n-2}+2 a_{n-3}: \forall n \geq 3
$$

Prove that $\quad a_{n} \leq 3^{n} \quad$ for all nonnegative integers n.

Solution:

18. Assume $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence defined as:

$$
a_{0}=1, \quad a_{1}=2, \quad a_{n}=4 a_{n-1}-4 a_{n-2} \quad: \forall n \geq 2
$$

Prove that $\quad a_{\mathrm{n}}=2^{n} \quad$ for all nonnegative integers n.

Solution:

19. Assume $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence defined as:

$$
a_{0}=1, \quad a_{1}=1, \quad a_{n}=4 a_{n-1}-4 a_{n-2} \quad: \forall n \geq 2
$$

Prove that $\quad a_{\mathrm{n}}=2^{n}-n 2^{n-1} \quad$ for all nonnegative integers n.

Solution:

20. Assume $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence defined as:

$$
a_{1}=1, a_{2}=3 \quad, \quad a_{n}=a_{n-1}+a_{n-2} \quad: \forall n \geq 3
$$

Prove that $\quad a_{\mathrm{n}}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n} \quad$ for all positive integers n.

Solution:

21. Assume $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a "Fibonacci" sequence defined as:

$$
a_{1}=1, a_{2}=1 \quad, \quad a_{n}=a_{n-1}+a_{n-2} \quad: \forall n \geq 3
$$

Prove that $\quad a_{\mathrm{n}} \leq\left(\frac{1+\sqrt{5}}{2}\right)^{n} \quad$ for all positive integers n.

Solution:

22. Assume $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence defined as:

$$
a_{0}=1, a_{1}=1, a_{2}=3, a_{n}=a_{n-1}+a_{n-2}+a_{n-3}: \forall n \geq 2
$$

Prove that $a_{\mathrm{n}}<3^{n}$ for all nonnegative integers n.

Solution:

23. Assume $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a sequence defined as:

$$
a_{0}=2, a_{1}=4, a_{2}=6, a_{n}=5 a_{n-3} \quad: \forall n \geq 3
$$

Prove that $2 \mid a_{\mathrm{n}}$ for all nonnegative integers n.

Solution:

24. Assume $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a "Fibonacci" sequence defined as:

$$
a_{1}=1, a_{2}=2 \quad, \quad a_{n}=2 a_{n-1}+a_{n-2} \quad: \forall n \geq 2
$$

Prove that $\quad a_{\mathrm{n}} \leq\left(\frac{5}{2}\right)^{n} \quad$ for all positive integers n.

Solution:

