CHAPTER 1

1 Graphs and Graph Models

Definition 1.1

A graph (رسی) $) G=(V, E)$ is a structure consisting of a set V of vertices (رؤُوسِ) (also called nodes), and a set E of edges (أضاَلَع), which are lines joining vertices.
Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect its endpoints. If the edge e links the vertex a to the vertex b, we write $e=\{a, b\}$.
The order of a graph $G=(V, E)$ is the cardinality of its vertex set, and the size of a graph is the cardinality of its edge set.

There is several type of graphs, (undirected, directed, simple, multigraph,...) have different formal definitions, depending on what kinds of edges are allowed.

Definition 1.2

1. A simple graph (رسی بسیطط) G is a graph that has no loops (عروَات), (that is no edge $\{a, b\}$ with $a=b$) and no parallel edges between any pair of vertices.
2. A multigraph G is a graph that has no loop and at least two parallel edges between some pair of vertices.

1.1 Simple Undirected Graph (رسم بسيط غير مو جه)

Only undirected edges, at most one edge between any pair of distinct nodes, and no loops.

1.2 Directed Graph (Digraph) (with loops)

Definition 1.3

A directed graph (digraph), $G=(V, E)$, consists of a non-empty set, V, of vertices (or nodes), and a set $E \subset V \times V$ of directed edges (or ordered pairs). Each directed edge $(a, b) \in E$ has a start (tail) vertex a, and a end (head) vertex b.
 .أنهائي).
Nöte: a directed graph $G=(V, E)$ is simply a set V together with a binary relation E on V.

Example 1 :

Only directed edges, at most one directed edge from any node to any node, and loops are allowed.

1.3 Simple Directed Graph

Only directed edges, at most one directed edge from any node to any other node, and no loops allowed.

1.4 Undirected Multigraph

Definition 1.4

A (simple, undirected) multigraph, $G=(V, E)$, consists of a non-empty set V of vertices (or nodes), and a set $E \subset[V]^{2}$ of (undirected) edges, but no loops.

Only undirected edges, may contain multiple edges between a pair of nodes, but no loops.

1.5 Directed Multigraph

Only directed edges, may contain multiple edges from one node to another, the loops are allowed.

1.6 Graph Terminology

Graph Terminology

	Type	Edges	Multi-Edges	Loops
1	(Simple undirected) graph	Undirected	No	No
2	(Undirected) multigraph	Undirected	Yes	No
3	(Undirected) pseudograph	Undirected	Yes	Yes
4	Directed graph	Directed	No	Yes
5	Simple directed graph	Directed	No	No
6	Directed multigraph	Directed	Yes	Yes
8	Mixed graph	Both	Yes	Yes

1.7 New Graphs

Definition 1.5

The union of two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the simple graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$. The union of G_{1} and G_{2} is denoted by $G_{1} \cup G_{2}$.

Example 2 :

G_{1}

G_{2}

$G_{1} \cup G_{2}$

2 Degree and neighborhood of a vertex

Remark 2.1

The set of vertices V of a graph G may be infinite. A graph with an infinite vertex set or an infinite number of edges is called an infinite graph, and in comparison, a graph with a finite vertex set and a finite edge set is called a finite graph.
In this course we will consider only finite graphs.

Definition 2.2

Two vertices a, b in a graph G are called adjacent (oتجاورة) in G if $\{a, b\}$ is an edge of G. If $e=\{a, b\}$ is an edge of G, then e is called incident with the vertices a and b or e connects a and b.

2.1 Degree and neighborhood of a vertex

Definition 2.3

The degree of a vertex a in an undirected graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex a is denoted by $\operatorname{deg}(a)$.

Definition 2.4

The neighborhood (neighbor set) of a vertex a in an undirected graph, denoted $N(a)$ is the set of vertices adjacent to a.

Example 3 :

Let F and G be the following graphs:

The degrees of the vertices in the graphs F and G are respectively: $\operatorname{deg}(a)=5$, $\operatorname{deg}(b)=2, \operatorname{deg}(c)=4, \operatorname{deg}(d)=5, \operatorname{deg}(e)=4, \operatorname{deg}(f)=2$.
$\operatorname{deg}(x)=3, \operatorname{deg}(y)=5, \operatorname{deg}(z)=2, \operatorname{deg}(t)=7, \operatorname{deg}(u)=1$.

$$
N(a)=\{b, c, d, e, f\}, N(b)=\{a, c\}, N(c)=\{a, b, d, e\} . \quad N(d)=\{a, c, e\},
$$

$N(e)=\{a, c, d, f\}, N(f)=\{a, e\}$.
$N(x)=\{y, z, t\}, N(y)=\{x, z, t\}, N(z)=\{x, y, t\}, N(t)=\{x, y, z, t, u\}, N(u)=\{t\}$.

Definition 2.5

For any graph G, we define

$$
\delta(G)=\min \{\operatorname{deg} v ; v \in V(G)\}
$$

and

$$
\Delta(G)=\max \{\operatorname{deg} v ; v \in V(G)\}
$$

If all the vertices of G have the same degree r, then $\delta(G)=\Delta(G)=r$ and in this case G is called a regular graph of degree r.
A regular graph of degree 3 is called a cubic graph.

2.2 Handshaking Theorem

Theorem 2.6: [Handshaking Lemma]

If $G=(V, E)$ is a undirected graph with m edges, then:

$$
2 m=\sum_{a \in V} \operatorname{deg}(a)
$$

Proof

Each edge contributes twice to the degree count of all vertices. Hence, both the left-hand and right-hand sides of this equation equal twice the number of edges.

Corollary 2.7

Every cubic graph has an even number of vertices.

Proof

Let G be a cubic graph with p vertices, then $\sum_{v \in V} \operatorname{deg}(v)=3 p$ which is even by Handshaking Theorem. Hence p is even.

Corollary 2.8

An undirected graph has an even number of vertices of odd degree.

Proof

Let V_{1} be the vertices of even degree and V_{2} be the vertices of odd degree in graph $G=(V, E)$ with m edges. Then

$$
2 m=\sum_{a \in V_{1}} \operatorname{deg}(a)+\sum_{a \in V_{2}} \operatorname{deg}(a) .
$$

$\sum_{a \in V_{1}} \operatorname{deg}(a)$ must be even since $\operatorname{deg}(a)$ is even for each $a \in V_{1}$.
$\sum_{a \in V_{2}} \operatorname{deg}(a)$ must be even because $2 m$ and $\sum_{a \in V_{1}} \operatorname{deg}(a)$ are even.

Example 4:

Every graph has with at least two vertices contains two vertices of equal degree.
Suppose that the all n vertices have different degrees, and look at the set of degrees. Since the degree of a vertex is at most $n-1$, the set of degrees must be $\{0,1,2, \ldots, n-2, n-1\}$.

But that's not possible, because the vertex with degree $n-1$ would have to be adjacent to all other vertices, whereas the one with degree 0 is not adjacent to any vertex.

Example 5 :

If a graph has 7 vertices and each vertices have degree 6 . The number of edges in the graph is 21 . $(6 \times 7=42=2 m=2 \times 21)$.

Example 6 :

There is a graph with four vertices a, b, c, and d with $\operatorname{deg}(a)=4$, $\operatorname{deg}(b)=5=$ $\operatorname{deg}(d)$, and $\operatorname{deg}(c)=2$.

The sum of the degrees is $4+5+2+5=16$. Since the sum is even, there might be such a graph with $\frac{16}{2}=8$ edges.

Example 7 :

A graph with 4 vertices of degrees $1,2,3$, and 3 does not exist because $1+2+3+3=9$ (The Handshake Theorem.)

Also there is not a such graph because, there is an odd number of vertices of odd degree.

Example 8 :

For each of the following sequences, find out if there is any simple graph of order 5 such that the degrees of its vertices are given by that sequence. If so, give an example.

1. $3,3,2,2,2$
2. $4,4,3,2,1$.
3. $4,3,3,2,2$.
4. $3,3,3,3,2$.
5. $5,3,2,2,2$.
6. $3,3,3,2,2$.
7. $3,3,2,2,2$

8. $4,4,3,2,1$. It does not exist. (One vertex v_{1} which has degree 4 , then there is one edge between v_{1} and the others vertices. Also there is an other vertex v_{2} which has degree 4 , then there is one edge between v_{2} and the others vertices. Then the minimum of degree is 2 and not 1).
9. $4,3,3,2,2$.

10. $3,3,3,2,2$. It does not exist. (The number of vertives with odd edges is odd).
11. $3,3,3,3,2$.

12. $5,3,2,2,2$. It does not exist. (The order is 5 and one vertex has degree 5).

2.3 Directed Graphs

Definition 2.9

The in-degree of a vertex a, denoted $\operatorname{deg}^{-}(a)$, is the number of edges directed into a. The out-degree of a, denoted $\operatorname{deg}^{+}(a)$, is the number of edges directed
out of a. Note that a loop at a vertex contributes 1 to both in-degree and out-degree.

In the graph we have: $\operatorname{deg}^{-}(a)=1, \operatorname{deg}^{+}(a)=2, \operatorname{deg}^{-}(b)=2, \operatorname{deg}^{+}(b)=3$, $\operatorname{deg}^{-}(c)=2, \operatorname{deg}^{+}(c)=2, \operatorname{deg}^{-}(d)=4, \operatorname{deg}^{+}(d)=3, \operatorname{deg}^{-}(e)=1, \operatorname{deg}^{+}(e)=0$.

Theorem 2.10

Let $G=(V, E)$ be a directed graph. Then:

$$
|E|=\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)
$$

Proof The first sum counts the number of outgoing edges over all vertices and the second sum counts the number of incoming edges over all vertices. Both sums must be $|E|$.

3 Special Types of Graphs

Definition 3.1

A null graph (or totally disconnected graph) is one whose edge set is empty. (A null graph is just a collection of vertices.)

3.1 Complete Graphs

A complete graph on n vertices, denoted by K_{n}, is the simple graph that contains exactly one edge between each pair of distinct vertices.

3.2 Cycles

A cycle for $n \geq 3$ consists of n vertices $v_{1}, v_{2}, \ldots, v_{n}$, and edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots$, $\left\{v_{n-1}, v_{n}\right\},\left\{v_{n}, v_{1}\right\}$.

3.3 The Wheel Graph

The wheel graph $W_{n}(n \geq 3)$ is obtained from C_{n} by adding a vertex a inside C_{n} and connecting it to every vertex in C_{n}.

$3.4 \quad n$-Cubes

An n-dimensional hypercube, or n-cube, is a graph with 2^{n} vertices representing all bit strings of length n, where there is an edge between two vertices if and only if they differ in exactly one bit position.

4 Bipartite graphs

4.1 Bipartite Graphs

Definition 4.1

A bipartite graph is an (undirected) graph $G=(V, E)$ whose vertices can be partitioned into two disjoint sets $\left(V_{1}, V_{2}\right)$, with $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$, such that for every edge $e \in E, e=\{a, b\}$ such that $a \in V_{1}$ and $b \in V_{2}$.

In other words, every edge connects a vertex in V_{1} with a vertex in V_{2}. Equivalently, a graph is bipartite if and only if it is possible to color each vertex red or blue such that no two adjacent vertices have the same color.

Definition 4.2

An equivalent definition of a bipartite graph is one where it is possible to color the vertices either red or blue so that no two adjacent vertices are the same color.

F
F is bipartite. $V_{1}=\{a, b, d\}, V_{2}=\{c, e, f, g\}$.
In G if we color a red, then its neighbors f and b must be blue. But f and b are adjacent. G is not bipartite

Example 10 :

C_{6} is bipartite. Partition the vertex set of C_{6} into $V_{1}=\left\{a_{1}, a_{3}, a_{5}\right\}$ and $V_{2}=\left\{a_{2}, a_{4}, a_{6}\right\}$.
If we partition vertices of C_{3} into two nonempty sets, one set must contains two vertices. But every vertex is connected to every other. So, the two vertices in the same partition are connected. Hence, C_{3} is not bipartite.

Theorem 4.3

Let G be a graph of n vertices. Then G is bipartite if and only if it contains no cycles of odd length.

4.2 Complete Bipartite Graphs

Definition 4.4

A complete bipartite graph is a graph that has its vertex set partitioned into two subsets V_{1} of size m and V_{2} of size n such that there is an edge from every vertex in V_{1} to every vertex in V_{2}.

Example 11 :

$K_{2,3}$
$K_{3,3}$
$K_{3,5}$

5 Subgraphs

5.1 Subgraphs

Definition 5.1

A subgraph of a graph $G=(V, E)$ is a graph (W, F), where $W \subset V$ and $F \subset E$. A subgraph F of G is a proper subgraph of G if $F \neq G$.

5.2 Induced Subgraphs

Definition 5.2

Let $G=(V, E)$ be a graph. The subgraph induced by a subset W of the vertex set V is the graph $H=(W, F)$, whose edge set F contains an edge in E if and only if both endpoints are in W.

$F=K_{2,4}$

$K_{3,5}$
$K_{2,4}$ is the subgraph of $K_{3,5}$ induced by $W=\{a, c, e, g, h\}$.

6 Representing Graphs and Graph Isomorphism

6.1 Representing Graphs: Adjacency Lists

Definition 6.1

An adjacency list represents a graph (with no multiple edges) by specifying the vertices that are adjacent to each vertex.

Example 12 :

G

An adjacency list for a simply graph	
Vertex	Adjacent vertices
a	b, d, e
b	a, c, e, d, f
c	b
d	a, b, e, f
e	a, b, d
f	b, d

Example 13 :

An adjacency list for a directed graph	
Initial vertex	Terminal vertices
a	b, d
b	a, c, d
c	c, d
d	b, d, e
e	

6.2 Representation of Graphs: Adjacency Matrices

Definition 6.2

Let $G=(V, E)$ be a simple graph where $|V|=n$. If $a_{1}, a_{2}, \ldots, a_{n}$ are the vertices of G. The adjacency matrix, A, of G, with respect to this listing of vertices, is the $n \times n$ matrix with its $(i, j)^{\text {th }}$ entry is 1 if a_{i} and a_{j} are adjacent, and 0 if they are not adjacent. $\left(A=\left(a_{i, j}\right)\right.$, with $a_{i, j}=1$ if $\left\{a_{i}, a_{j}\right\} \in E$ and $a_{i, j}=0$ if $\left\{a_{i}, a_{j}\right\} \notin E$.)

Example 14 :

G
The adjacency matrix is $\left(\begin{array}{ccccc}0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0\end{array}\right)$
The adjacency matrix of an undirected graph is symmetric: Also, since there are no loops, each diagonal entry is zero:

Example 15 :

The adjacency matrix for the following pseudograph is:

$$
\left(\begin{array}{lllll}
0 & 2 & 0 & 1 & 0 \\
2 & 0 & 1 & 2 & 0 \\
0 & 1 & 2 & 1 & 0 \\
1 & 2 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

6.3 Isomorphism of Graphs

Definition 6.3

Two (undirected) graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are called isomorphic if there is a bijection, $f: V_{1} \longrightarrow V_{2}$, with the property that for all vertices $a, b \in V_{1}$

$$
\{a, b\} \in E_{1} \Longleftrightarrow\{f(a), f(b)\} \in E_{2} .
$$

Such function f is called an isomorphism.

The following graphs are isomorphic.

The following graphs are isomorphic.

Theorem 6.4

Let f be an isomorphism of the graph $G_{1}=\left(V_{1}, E_{1}\right)$ to the graph $G_{2}=\left(V_{2}, E_{2}\right)$. Let $v \in V_{1}$. Then $\operatorname{deg}(v)=\operatorname{deg}(f(v)$. i.e., isomorphism preserves the degree of vertices.

Proof A vertex $u \in V_{1}$ is adjacent to a vertex v in G_{1} if and only if $f(u)$ is adjacent to $f(v)$ in G_{2}. Also f is bijection. Hence the number of vertices in V_{1} which are adjacent to v is equal to the number of vertices in V_{2} which are adjacent to $f(v)$. Hence $\operatorname{deg}(v)=\operatorname{deg}(f(v))$.

Remarks 6.5

1. Two isomorphic graphs have the same number of vertices and the same number of edges.
2. Two isomorphic graphs have equal number of vertices with a given degree. However these conditions are not sufficient to ensure that two graphs are isomorphic.

Example 16 :

Consider the two graphs given in figure below. Under any isomorphism d must correspond to c^{\prime}, a, e, f must correspond to $a^{\prime}, d^{\prime}, f^{\prime}$ in some order. The remaining two vertices b, c are adjacent whereas b^{\prime}, e^{\prime} are not adjacent. Hence there does not exist an isomorphism.

7 Connectedness in undirected graphs

7.1 Paths (in undirected graphs)

Informally, a path is a sequence of edges connecting vertices.

Definition 7.1

1. For an undirected graph $G=(V, E)$, an integer $n \geq 0$, and vertices $a, b \in V$, a path of length n from a to b in G is a sequence: $x_{0}, e_{1}, x_{1}, e_{2}, \ldots, x_{n-1}, e_{n}, x_{n}$ of interleaved vertices $x_{j} \in V$ and edges $e_{i} \in E$, such that $x_{0}=a$ and $x_{n}=b$, and such that $e_{i}=\left\{x_{i-1}, x_{i}\right\} \in E$ for all $i \in\{1, \ldots, n\}$.
Such path starts at a and ends at b.
The trivial path from v to v consists of the single vertex v.

Definition 7.2

2. A path of length $n \geq 1$ is called a circuit (or cycle) if $n \geq 1$ and the path starts and ends at the same vertex, i.e., $a=b$.
3. A path or circuit is called simple if it does not contain the same edge more than once.

Remarks 7.3

1. When $G=(V, E)$ is a simple undirected graph a path $x_{0}, e_{1}, \ldots, e_{n}, x_{n}$ is determined uniquely by the sequence of vertices $x_{0}, x_{1}, \ldots, x_{n}$. So, for simple undirected graphs we can denote a path by its sequence of vertices $x_{0}, x_{1}, \ldots, x_{n}$.
2. Don't confuse a simple undirected graph with a simple path. There can be a simple path in a non-simple graph, and a non-simple path in a simple graph.

3. d, a, b, c, f is a simple path of length 4 .
4. d, e, c, b, a, d is a simple circuit of length 5 .
5. d, a, b, c, f, b, a, e is a path, but it is not a simple path, because the edge $\{a, b\}$ occurs twice in it.
6. c, e, a, d, e, f is a simple path, but it is not a tidy path, because vertex e occurs twice in it.

7.2 Paths in directed graphs

Definition 7.4

1. For a directed graph $G=(V, E)$, an integer $n \geq 0$, and vertices $a, b \in V$, a path of length n from a to b in G is a sequence of vertices and edges $x_{0}, e_{1}, x_{1}, e_{2}, \ldots, x_{n}, e_{n}$, such that $x_{0}=a$ and $x_{n}=b$, and such that $e_{i}=\left(x_{i-1}, x_{i}\right) \in E$ for all $i \in\{1, \ldots, n\}$.
2. When there are no multi-edges in the directed graph G, the path can be denoted (uniquely) by its vertex sequence $x_{0}, x_{1}, \ldots, x_{n}$.
3. A path of length $n \geq 1$ is called a circuit (or cycle) if the path starts and ends at the same vertex, i.e., $a=b$.

Definition 7.5

4. A path or circuit is called simple if it does not contain the same edge more than once. (And we call it tidy if it does not contain the same vertex more than once, except possibly the first and last in case $a=b$ and the path is a circuit (cycle).)

7.3 Connectedness in undirected graphs

Definition 7.6

An undirected graph $G=(V, E)$ is called connected, if there is a path between every pair of distinct vertices. It is called disconnected otherwise.

This graph is connected

Theorem 7.7

A graph G is connected if and only if for any partition of V into subsets V_{1} and V_{2} there is an edge joining a vertex of V_{1} to a vertex of V_{2}.

Theorem 7.8

There is always a simple, and tidy, path between any pair of vertices a, b of a connected undirected graph G.

Proof By definition of connectedness, for every pair of vertices a, b, there must exist a shortest path $x_{0}, e_{1}, x_{1}, \ldots, e_{n}, x_{n}$ in G such that $x_{0}=a$ and $x_{n}=b$. Suppose this path is not tidy, and $n \geq 1$. (If $n=0$, the Proposition is trivial.) Then $x_{j}=x_{k}$ for some $0 \leq j<k \leq n$. But then $x_{0}, e_{1}, x_{1}, \ldots, x_{j}, e_{k+1}, x_{k+1}, \ldots, e_{n}, x_{n}$ is a shorter path from a to b, contradicting the assumption that the original path was shortest.

7.4 Connected Components of Undirected Graphs

Definition 7.9

A connected component $H=\left(V^{\prime}, E^{\prime}\right)$ of a graph $G=(V, E)$ is a maximal connected subgraph of G, meaning H is connected and $V^{\prime} \subset V$ and $E^{\prime} \subset E$, but H is not a proper subgraph of a larger connected subgraph R of G.

This graph, $G=(V, E)$, has 3 connected components. (It is thus a disconnected graph.)

7.5 Connectedness in Directed Graphs

Definition 7.10

1. A directed graph $G=(V, E)$ is called strongly connected, if for every pair of vertices a and b in V, there is a (directed) path from a to b, and a directed path from b to a.
2. $(G=(V, E)$ is weakly connected if there is a path between every pair of vertices in V in the underlying undirected graph (meaning when we ignore the direction of edges in E.) A strongly connected component of a directed graph G, is a maximal strongly connected subgraph H of G which is not contained in a larger strongly connected subgraph of G.

This digraph, G, is not strongly connected, because, for example, there is no directed path from e to b.
One strongly connected component of G is $H=\left(V_{1}, E_{1}\right)$, where $V_{1}=\{a, c, d, e, f\}$ and $E_{1}=\{(a, e),(e, c),(c, f),(f, e),(e, d),(d, a)\}$.

8 Paths and Isomorphism

8.1 Paths and Isomorphism

There are several ways that paths and circuits can help determine whether two graphs are isomorphic. For example, the existence of a simple circuit of a particular length is a useful invariant that can be used to show that two graphs are not isomorphic. In addition, paths can be used to construct mappings that may be isomorphisms. As we mentioned, a useful isomorphic invariant for simple graphs is the existence of a simple circuit of length k, where k is a positive integer greater than 2.

Let G and H be the following graphs.

Both G and H have six vertices and eight edges. Each has 4 vertices of degree 3 , and two vertices of degree 2 . So, the three invariants number of vertices, number of edges, and degrees of vertices all agree for the two graphs. However, H has a simple
circuit of length 3 , namely, $b_{1}, b_{2}, b_{6}, b_{1}$, whereas G has no simple circuit of length 3 . Then G and H are not isomorphic.

Example 17 :

Let G and H be the following graphs.

G

H

Both G and H have 5 vertices and 6 edges, both have 2 vertices of degree 3 and 3 vertices of degree 2 , and both have a simple circuit of length 3 , a simple circuit of length 4 , and a simple circuit of length 5 .

Because all these isomorphic invariants agree, G and H may be isomorphic.
To find a possible isomorphism, we can follow paths that go through all vertices so that the corresponding vertices in the two graphs have the same degree. For example, the paths $a_{1}, a_{4}, a_{3}, a_{2}, a_{5}$ in G and $b_{3}, b_{2}, b_{1}, b_{5}, b_{4}$ in H both go through every vertex in the graph, start at a vertex of degree 3, go through vertices of degrees 2 , three, and two, respectively, and end at a vertex of degree 2. By following these paths through the graphs, we define the mapping f with $f\left(a_{1}\right)=b_{3}, f\left(a_{4}\right)=b_{2}, f\left(a_{3}\right)=b_{1}$, $f\left(a_{2}\right)=b_{5}$, and $f\left(a_{5}\right)=b_{4}$.

Determine which of the graphs are isomorphic.

9 Counting Paths Between Vertices

9.1 Counting Paths Between Vertices

The number of paths between two vertices in a graph can be determined using its adjacency matrix.

Theorem 9.1

Let G be a graph with adjacency matrix A with respect to the ordering $b_{1}, b_{2}, \ldots, b_{n}$ of the vertices of the graph (with directed or undirected edges, with multiple edges and loops allowed). The number of different paths of length r from b_{i} to b_{j}, where r is a positive integer, equals the $(i, j)^{t h}$ entry of A^{r}.

Example 18 :

How many paths of length four are there from a to d in the simple graph G

The adjacency matrix of G (ordering the vertices as a, b, c, d) is
$A=\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right)$.
Hence, the number of paths of length 4 from a to d is the $(1,4)^{t h}$ entry of A^{4}.
Because $A=\left(\begin{array}{llll}8 & 0 & 0 & 8 \\ 0 & 8 & 8 & 0 \\ 0 & 8 & 8 & 0 \\ 8 & 0 & 0 & 8\end{array}\right)$.
There are exactly eight paths of length four from a to d. By inspection of the graph, we see that $a, b, a, b, d ; a, b, a, c, d ; a, b, d, b, d ; a, b, d, c, d ; a, c, a, b, d ; a, c, a, c, d ; a, c, d, b, d ;$ and a, c, d, c, d are the eight paths of length four from a to d.

10 Exercises

Exercise 1 :

Consider a graph $G=(V, E)$ of order n and size m. Let v be a vertex and e an edge of G. Give the order and the size of $\bar{G}=G^{c}, G-v$ and $G-e$.

Solution to Exercise 1:

The order of $\bar{G}=G^{c}$ is the order of G. The size of $\bar{G}=G^{c}$ is $\frac{n(n+1)}{2}-m$.
The order of $G-v$ is $n-1$. The size of $G-v$ is $m-\operatorname{deg}(v)$.
The order of $G-e$ is n. The size of $G-e$ is $m-1$.

Exercise 2 :

Consider the graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. Give the order, the degree of the vertices and the size of $G_{1} \times G_{2}$ in terms of those of G_{1} and G_{2}.

Solution to Exercise 2:

The order of $G_{1} \times G_{2}$ is $\left|V_{1}\right|\left|V_{2}\right|, \operatorname{deg}_{G_{1} \times G_{2}}(v)=\operatorname{deg}_{G_{1}}(v)+\operatorname{deg}_{G_{2}}(v)$ and size $\left|V_{1}\right|\left|E_{2}\right|+\left|V_{2}\right|\left|E_{1}\right|$.

Exercise 3 :

For each of the following sequences, find out if there is any simple graph of order 5 such that the degrees of its vertices are given by that sequence. If so, give an example.

1. $3,3,2,2,2$
2. $4,3,3,2,2$.
3. $3,3,3,3,2$.
4. $5,3,2,2,2$.
5. $4,4,3,2,1$ 4. $3,3,3,2,2$.

Solution to Exercise 3:

1. $3,3,2,2,2$

2. $4,4,3,2,1$. It does not exist. (One vertice v_{1} which has degree 4 , then there is one edge between v_{1} and the others vertices. Also there is an other vertex v_{2} which has degree 4 , then there is one edge between v_{2} and the others vertices. Then the minimum of degree is 2 and not 1).
3. $4,3,3,2,2$.

4. It does not exist. (The number of vertives with odd edges is odd).
5. $3,3,3,3,2$.

6. 5, $3,2,2,2$. It does not exist. (The order is 5 and one vertive has degree 5).

Exercise 4 :

Let $V=\{a, b, c, d, e, f\}, E=\{a b, a f, a d, b e, d e, e f\}$ and $G=(V, E)$. Determine all the subgraphs of G of order 4 and size 4.

Solution to Exercise 4:

$(\{a, b, e, d\},\{a b, b e, e d, d a\})$
$(\{a, b, e, f\},\{a b, b e, e f, f a\})$
$(\{a, d, e, f\},\{a d, d e, e f, f a\})$

Exercise 5 :

Prove that if a graph is regular of odd degree, then it has even order.

Solution to Exercise 5:

If the graph is of order n and regular of $2 p+1$ degree, then $(2 p+1)$ must be evn, then n is even.

Exercise 6 :

Let G be a bipartite graph of order n and regular of degree $d \geq 1$. Which is the size of G ? Could it be that the order of G is odd?

Solution to Exercise 6:

The size of G is $2 d$. The order of G is $2 d$.

Exercise 7 :

Prove that the size of a bipartite graph of order n is at most $\frac{n^{2}}{4}$.

Solution to Exercise 7:

If $n=p+q$ is the order of G and p is the order of V_{1} and q is the order of V_{2}. The size of G is $p(n-p)$. The minimum of $p(n-p)$ is reached for $p=\frac{n}{2}$. Then the size of G is at most $\frac{n^{2}}{4}$.

Exercise 8 :

In each of the following graphs, find simple paths of length 9 and 11, and cycles of length $5,6,8$ and 9 , if possible.

Solution to Exercise 8:
G_{1} : Path of length 9: 12345107968 . There are no paths of length 11 because G_{1} has order 10.
Cycles: $123451,12381051,1681079451,12349710861$.
$G_{2}: 12345106789$. There are no paths of length 11 because G_{2} has order 11 .
Cycles: $123451,510611945,2345109872,512349116105$.

Exercise 9 :

Let $G=(V, E)$ and $H=(W, B)$ be two graphs. Prove that G and H are isomorphic if, and only if, \bar{G} and \bar{H} are isomorphic.

Solution to Exercise 9:

Exercise 10 :

Let G be a graph with order 9 so that the degree of each vertex is either 5 or 6 . Prove that there are either at least 5 vertices of degree 6 or at least 6 vertices of degree 5 .

Solution to Exercise 10:

Exercise 11 :

Let G be a (p, q) graph all of whose vertices have degree k or $k+1$. If G has $m>0$ vertices of degree k, show that $m=p(k+1$) $-2 q$. (A graph with p vertices and q edges is called a (p, q) graph).

Solution to Exercise 11:

Since G has m vertices of degree k, the remaining $p-m$ vertices have degree $k+1$. Hence $\sum_{v \in V} \operatorname{deg}(v)=m k+(p-m)(k+1)=2 q$. Then $m=p(k+1)-2 q$.

Exercise 12 :

Show that in any group of two or more people, there are always two with exactly the same number of friends inside the group.

Solution to Exercise 12:

We construct a graph G by taking the group of people as the set of vertices and joining two of them if they are friends, then $\operatorname{deg}(v)$ is equal to number of friends of v and hence we need only to prove that at least two vertices of G have the same degree. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Clearly $0 \leq \operatorname{deg}\left(v_{i}\right) \leq p-1$ for each i. Suppose no two vertices of G have the same degree. Then the degrees of $v_{1}, v_{2}, \ldots, v_{p}$ are the integers $0,1,2, \ldots, p-1$ in some order. However a vertex of degree $p-1$ is joined to every other vertex of G and hence no vertex can have degree zero which is a contradiction. Hence there exist two vertices of G with equal degree.

Exercise 13 :

Prove that $\delta \leq 2 q / p \leq \Delta$.

Solution to Exercise 13:

Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. We have $\delta \leq \operatorname{deg}\left(v_{i}\right) \leq \Delta$ for all i. Hence $p \delta \leq$ $\sum_{i=1}^{p} \operatorname{deg}\left(v_{i}\right) \leq p \Delta$. Then $p \delta \leq 2 q \leq p \Delta$ (by Handshaking Theorem). We deduce that $\delta \leq 2 q / p \leq \Delta$.

Exercise 14 :

Let G be a k-regular bipartite graph with bipartion $\left(V_{1}, V_{2}\right)$ and $k>0$. Prove that $\left|V_{1}\right|=\left|V_{2}\right|$.

Solution to Exercise 14:

Since every line of G has one end in V_{1} and other end in V_{2} it follows that $\sum_{v \in V_{1}} \operatorname{deg}(v)=$ $\sum_{v \in V_{2}} \operatorname{deg}(v)=q$. Also $\operatorname{deg}(v)=k$ for all $v \in V=V_{1} \cup V_{2}$. Hence $\sum_{v \in V_{1}} \operatorname{deg}(v) k\left|V_{1}\right|$ and $\sum_{v \in V_{2}} \operatorname{deg}(v)=k\left|V_{2}\right|$ so that $k\left|V_{1}\right|=k\left|V_{2}\right|$. Since $k>0$, we have $\left|V_{1}\right|=\left|V_{2}\right|$.

Exercise 15 :

Let $V=\{1,2,3, \ldots, n\}$. Let $X=\{\{i, j\} ; i, j \in V$ and are relatievly prime $\}$. The resulting graph (V, X) is denoted by G_{n}. Draw G_{4} and G_{5}.
Solution to Exercise 15:

W_{4}

W_{5}

Exercise 16 :

Let G be a graph with minimum degree $p>1$. Prove that G contains a cycle of length at least $p+1$.

Solution to Exercise 16:

Let v_{1}, \ldots, v_{k} be a maximal path in $G, k \geq m+1$ and the path has length at least m.
The neighbor of v_{1} that is furthest along the path must be v_{j} with $j \geq m+1$. Then $v_{1}, \ldots, v_{j}, v_{1}$ is a cycle of length at least $m+1$.

Exercise 17 :

Show that every graph on at least two vertices contains two vertices of equal degree.

Solution to Exercise
 17:

Suppose that the n vertices all have different degrees, and look at the set of degrees. Since the degree of a vertex is at most $n-1$, the set of degrees must be $\{0,1,2, \ldots, n-$ $2, n-1\}$.

But that's not possible, because the vertex with degree $n-1$ would have to be adjacent to all other vertices, whereas the one with degree 0 is not adjacent to any vertex.

Exercise 18 :

- The null graph of order n, denoted by N_{n}, is the graph of order n and size 0 . The graph N_{1} is called the trivial graph.
- The complete graph of order n, denoted by K_{n}, is the graph of order n that has all possible edges. We observe that K_{1} is a trivial graph too.
- The path graph of order n, denoted by $P_{n}=(V, E)$, is the graph that has as a set of edges $E=\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}\right\}$.
- The cycle graph of order $n \geq 3$, denoted by $C_{n}=(V, E)$, is the graph that has as a set of edges $E=\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}, x_{n} x_{1}\right\}$.
- The wheel graph of order $n \geq 4$, denoted by $W_{n}=(V, E)$, is the graph that has as a set of edges $E=\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{1}, x_{n} x_{1}\right\} \cup\left\{x_{n} x_{1}, x_{n} x_{2}, \ldots, x_{n} x_{n-1}\right\}$

For each of the graphs $N_{n}, K_{n}, P_{n}, C_{n}$ and W_{n}, give:

1. a drawing for $n=4$ and $n=6$,
2. the adjacency matrix for $n=5$,
3. the order, the size, the maximum degree and the minimum degree in terms of n.

Solution to Exercise 18:

1.

$$
N_{6}
$$

2. $M_{N_{5}}=\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$

C_{6}

$$
M_{P_{5}}=\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \quad M_{C_{5}}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right) \quad M_{W_{5}}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right)
$$

3. For a $n \geq 3$

$$
\begin{aligned}
& N_{n}=(V, E),|V|=n,|\mathrm{E}|=0, \delta\left(N_{n}\right)=0, \Delta\left(N_{n}\right)=0 \\
& K_{n}=(V, E),|V|=n,|E|=C_{n}^{2}, \delta\left(K_{n}\right)=n-1, \Delta\left(K_{n}\right)=n-1 \\
& P_{n}=(V, E),|V|=n,|E|=n-1, \delta\left(P_{n}\right)=1, \Delta\left(P_{n}\right)=2 \\
& C_{n}=(V, E),|V|=n,|E|=n, \delta\left(C_{n}\right)=2, \Delta\left(C_{n}\right)=2 \\
& W_{n}=(V, E),|V|=n,|E|=2 n-2, \delta\left(W_{n}\right)=3, \Delta\left(W_{n}\right)=n-1
\end{aligned}
$$

Exercise 19 :

1. Is C_{n} a subgraph of K_{n} ?
2. For what values of n and m is $K_{n, n}$ a subgraph of K_{m} ?
3. For what n is C_{n} a subgraph of $K_{n, n}$?

Solution to Exercise 19:

1. Yes! (by definition of subgraph, or just simply by the fact that K_{n} has all the possible edges a graph on n vertices can have.)
2. We must have $m=\left|V\left(K_{m}\right)\right|,\left|V\left(K_{n, n}\right)\right|=2 n$. On the other hand, by a similar reasoning as part (1), we get that the statement holds for all m, n with $m \geq 2 n$.
3. First, note that a bipartite graph cannot have any cycle of odd length, so n cannot be odd. For even n, one can check that $K_{n, n}$ has a cycle of length n.

Exercise 20 :

Given a graph G with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ we define the degree sequence of G to be the list $\operatorname{deg}\left(v_{1}\right), \ldots, \operatorname{deg}\left(v_{n}\right)$ of degrees in decreasing order. For each of the following lists, give an example of a simple graph with such a degree sequence or prove that no such graph exists:

1. $3,3,2,2,2,1$
2. $6,6,6,4,4,3,3$
3. $6,6,6,4,4,2,2$
4. $6,6,6,6,5,4,2,1$

Solution to Exercise 20:

1. There is no such graph, since the number of odd-degree vertices in a graph is always even.
2. Consider the following graph:

3. No, since otherwise we have 3 vertices of degree 6 which are adjacent to all other vertices of the graph, so each vertex in the graph must be of degree at least 3 .
4. No! Note that each vertex of the degree 6 is adjacent to all but one other vertices. In particular, each such vertex is adjacent to at least one of v_{1} and v_{2} (where $\operatorname{deg}\left(v_{1}\right)=1$ and $\operatorname{deg}\left(v_{2}\right)=2$). But that would mean at least four edges touching v_{1} or v_{2}, contradicting $\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)=3<4$.

Exercise 21 :

Construct two graphs that have the same degree sequence but are not isomorphic.

Solution to Exercise 21:

Let F be of a cycle on 6 vertices, and let G be the union of two disjoint cycles on 3 vertices each. In both graphs each vertex has degree 2, but the graphs are not isomorphic, since one is connected and the other is not.

Exercise 22:

A graph is k-regular if every vertex has degree k. Describe all 1 -regular graphs and all 2 -regular graphs.

Solution to Exercise 22:

A 1-regular graph is just a disjoint union of edges. A 2-regular graph is a disjoint union of cycles.

Exercise 23 :

Draw diagrams to represent each of the graphs whose adjacency matrix is given below. Write down the degree of each vertex, and state whether the graph is (a) simple; (b) regular.

1. $\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right)$
$2 .\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0\end{array}\right)$
2. $\left(\begin{array}{lllll}1 & 2 & 0 & 2 & 1 \\ 2 & 1 & 2 & 0 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 2 & 0 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0\end{array}\right)$

Exercise 24 :

Decide whether there exists a graph with 5 vertices of degree $1,2,3,3$, and 5 , respectively.

Solution to Exercise 23:

Yes.

Exercise 25 :

Simple graph with six edges and all vertices of degree 3 .

Solution to Exercise 24:

For having all vertices of degree 3, the graph should have 4 vertices with two diagonals.

Exercise 26 :

Is there a simple graph, each of whose vertices has even degree?
Solution to Exercise 25:
Yes. Consider a graph that forms a geometric figure, e.g., a triangle. This is a simple circuit and each vertex has degree 2.

Exercise 27 :

Recall that K_{n} denotes a complete graph on n vertices, that is, a simple graph with n vertices and exactly 1 edge between each pair of distinct vertices. Show that for all integers $n \geq 1$, the number of edges of K_{n} is $\frac{n(n-1)}{2}$.

Solution to Exercise 26:

The statement can be proved by induction, since K_{n+1} can be obtained starting from K_{n} and by adding a vertex and connecting it to the other n vertices. K_{1} has 1 vertex and 0 edges $=\frac{1.0}{2}$.

Assume that K_{n} has $\frac{n(n-1)}{2}$ edges. K_{n+1} is obtained by K_{n} adding an $(n+1)^{\text {th }}$ vertex, and connecting it with all the other n vertices through n distinct edges. Therefore K_{n+1} has $n+\frac{n(n-1)}{2}$ edges, that is $\frac{n(n+1)}{2}$.

Alternatively, use the Handshake Theorem: 2 times number of edges of $G=$ $\operatorname{deg}(G)=\sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)$. Since, by definition, v_{i} has $(n-1)$ edges $(1$ for each of the
other $(n-1)$ vertices), then, for each $i=1 \ldots n$, $\operatorname{deg}\left(v_{i}\right)=(n-1)$. Therefore, 2 times the number of edges of $G=n(n-1)$, that is, the number of edges of $G=\frac{n(n-11)}{2}$.

Exercise 28:

Give the set of edges and a drawing of the graphs $K_{3} \cup P_{3}$ and $K_{3} \times P_{3}$, assuming that the sets of vertices of K_{3} and P_{3} are disjoint.

Solution to Exercise 27:

1. $K_{3} \cup P_{3}, E=\{a b, a c, b c, 12,23\}$

2. $K_{3} \times P_{3}$

$$
\begin{gathered}
E=\{(1, a)(1, b) ;(1, a)(1, c) ;(1, a)(2, a) ;(1, b)(1, c) ;(1, b)(2, b) ;(1, c)(2, c) ;(2, a)(2, b) ; \\
(2, a)(2, c) ;(2, a)(3, a) ;(3, a)(3, b) ;(3, a)(3, c) ;(3, b)(3, c)\}
\end{gathered}
$$

Exercise 29 :

A graph is self-complementary if it is isomorphic to its complement.

1. How many edges does a self-complementary graph of order n have?
2. Prove that if n is the order of a self-complementary graph, then n is congruent with 0 or with 1 modulo 4 .
3. Check that for $n=4 k$ with $k \geq 1$, the following construction yields a selfcomplementary graph of order n, let us take $V=V_{1} \cup V_{2} \cup V_{3} \cup V_{4}$, where each V_{i} contains k vertices, the vertices of V_{1} and V_{2} induce complete graphs, also, we have all edges between V_{1} and V_{3}, between V_{3} and V_{4}, and between V_{4} and V_{2}.
4. How could we modify the previous construction to build a self-complementary graph of order $4 k+1$?

Solution to Exercise 28:

