
CHAPTER 1

GRAPH THEORY

1 Graphs and Graph Models

Definition 1.1
A graph (Õæ�P) G = (V,E) is a structure consisting of a set V of vertices (�ð

�
ðP)

(also called nodes), and a set E of edges (¨C
�

	
�


@), which are lines joining vertices.

Each edge has either one or two vertices associated with it, called its endpoints. An
edge is said to connect its endpoints. If the edge e links the vertex a to the vertex b,
we write e = {a, b}.
The order of a graph G = (V,E) is the cardinality of its vertex set, and the size of a
graph is the cardinality of its edge set.

There is several type of graphs, (undirected, directed, simple, multigraph,...)
have different formal definitions, depending on what kinds of edges are allowed.

Definition 1.2

1. A simple graph (¡J
��. Õæ�P) G is a graph that has no loops (
�

H@
�
ðQ«), (that is no

edge {a, b} with a = b) and no parallel edges between any pair of vertices.

2. A multigraph G is a graph that has no loop and at least two parallel edges between
some pair of vertices.
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1.1 Simple Undirected Graph ( ék. ñÓ Q�

	
« ¡J
��. Õæ�P)

b
c
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d

Only undirected edges, at most one edge between any pair of distinct nodes,
and no loops.

1.2 Directed Graph (Digraph) (with loops)

Definition 1.3
A directed graph (digraph) , G = (V,E), consists of a non-empty set, V , of vertices
(or nodes), and a set E ⊂ V × V of directed edges (or ordered pairs). Each directed
edge (a, b) ∈ E has a start (tail) vertex a, and a end (head) vertex b.

a is called the initial vertex (ú
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Note: a directed graph G = (V,E) is simply a set V together with a binary relation
E on V .

Example 1 :

•A

•D

•B

•
C

Only directed edges, at most one directed edge from any node to any node,
and loops are allowed.

1.3 Simple Directed Graph

•A

•D

•B

•
C

Only directed edges, at most one directed edge from any node to any other
node, and no loops allowed.
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1.4 Undirected Multigraph

Definition 1.4
A (simple,undirected) multigraph, G = (V,E), consists of a non-empty set V of ver-
tices (or nodes), and a set E ⊂ [V ]2 of (undirected) edges, but no loops.

•A

•D

•B

•
C

Only undirected edges, may contain multiple edges between a pair of nodes,
but no loops.

1.5 Directed Multigraph

•
A

•D

•B

•
C

Only directed edges, may contain multiple edges from one node to another,
the loops are allowed.

1.6 Graph Terminology

Graph Terminology

Type Edges Multi-Edges Loops
1 (Simple undirected) graph Undirected No No
2 (Undirected) multigraph Undirected Yes No
3 (Undirected) pseudograph Undirected Yes Yes
4 Directed graph Directed No Yes
5 Simple directed graph Directed No No
6 Directed multigraph Directed Yes Yes
8 Mixed graph Both Yes Yes

1.7 New Graphs

Definition 1.5
The union of two simple graphs G1 = (V1, E1) and G2 = (V2, E2) is the simple graph
with vertex set V1 ∪ V2 and edge set E1 ∪ E2. The union of G1 and G2 is denoted by
G1 ∪G2.



4 CHAPTER 1. GRAPH THEORY

Example 2 :

•a •b •c

•
d

•
e

G1

•a •b

•
f

•
d

•
e

G2

•a •b •c

•
e

•
d

•
f

G1 ∪G2

2 Degree and neighborhood of a vertex

Remark 2.1
The set of vertices V of a graph G may be infinite. A graph with an infinite vertex
set or an infinite number of edges is called an infinite graph, and in comparison, a
graph with a finite vertex set and a finite edge set is called a finite graph.
In this course we will consider only finite graphs.

Definition 2.2
Two vertices a, b in a graph G are called adjacent (

�
èPðA

�
j.

�
JÓ) in G if {a, b} is an edge

of G. If e = {a, b} is an edge of G, then e is called incident with the vertices a and
b or e connects a and b.

2.1 Degree and neighborhood of a vertex

Definition 2.3
The degree of a vertex a in an undirected graph is the number of edges incident with
it, except that a loop at a vertex contributes twice to the degree of that vertex. The
degree of the vertex a is denoted by deg (a).

Definition 2.4
The neighborhood (neighbor set) of a vertex a in an undirected graph, denoted N(a)
is the set of vertices adjacent to a.

Example 3 :
Let F and G be the following graphs:

•a
•b
•
c

•d

•e
•
f

•x

•y •
z

• t •u
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The degrees of the vertices in the graphs F and G are respectively: deg (a) = 5,
deg (b) = 2, deg (c) = 4, deg (d) = 5, deg (e) = 4, deg (f) = 2.
deg (x) = 3, deg (y) = 5, deg (z) = 2, deg (t) = 7, deg (u) = 1.

N(a) = {b, c, d, e, f}, N(b) = {a, c}, N(c) = {a, b, d, e}. N(d) = {a, c, e},
N(e) = {a, c, d, f}, N(f) = {a, e}.
N(x) = {y, z, t}, N(y) = {x, z, t}, N(z) = {x, y, t}, N(t) = {x, y, z, t, u}, N(u) = {t}.

Definition 2.5
For any graph G,we define

δ(G) = min{deg v; v ∈ V (G)}

and
∆(G) = max{deg v; v ∈ V (G)}.

If all the points of G have the same degree r, then δ(G) = ∆(G) = r and in this case
G is called a regular graph of degree r.
A regular graph of degree 3 is called a cubic graph.

2.2 Handshaking Theorem

Theorem 2.6 (Handshaking Lemma)
If G = (V,E) is a undirected graph with m edges, then:

2m =
∑
a∈V

deg (a).

Proof
Each edge contributes twice to the degree count of all vertices. Hence, both the
left-hand and right-hand sides of this equation equal twice the number of edges.

Corollary 2.7
Every cubic graph has an even number of points.

Proof
Let G be a cubic graph with p points, then

∑
v∈V

deg (v) = 3p which is even by Hand-

shaking Theorem. Hence p is even.

Corollary 2.8
An undirected graph has an even number of vertices of odd degree.

Proof
Let V1 be the vertices of even degree and V2 be the vertices of odd degree in graph
G = (V,E) with m edges. Then

2m =
∑
a∈V1

deg (a) +
∑
a∈V2

deg (a).
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a∈V1

deg (a) must be even since deg (a) is even for each a ∈ V1.∑
a∈V2

deg (a) must be even because 2m and
∑
a∈V1

deg (a) are even.

Example 4 :
Every graph has with at least two vertices contains two vertices of equal degree.

Suppose that the all n vertices have different degrees, and look at the set of
degrees. Since the degree of a vertex is at most n − 1, the set of degrees must be
{0, 1, 2, . . . , n− 2, n− 1}.

But that’s not possible, because the vertex with degree n − 1 would have to
be adjacent to all other vertices, whereas the one with degree 0 is not adjacent to any
vertex.

Example 5 :
If a graph has 7 vertices and each vertices have degree 6. The nombre of edges in the
graph is 21. (6× 7 = 42 = 2m = 2× 21).

Example 6 :
There is a graph with four vertices a, b, c, and d with deg (a) = 4, deg (b) = 5 =
deg (d), and deg (c) = 2.

The sum of the degrees is 4 + 5 + 2 + 5 = 16. Since the sum is even, there
might be such a graph with 16

2
= 8 edges.

a

d

b

c
•

•

•

•

Example 7 :
A graph with 4 vertices of degrees 1, 2, 3, and 3 does not exist because 1+2+3+3 = 9
(The Handshake Theorem.)
Also there is not a such graph because, there is an odd number of vertices of odd
degree.

Example 8 :
For each of the following sequences, find out if there is any graph of order 5 such that
the degrees of its vertices are given by that sequence. If so, give an example.

1. 3, 3, 2, 2, 2

2. 4, 4, 3, 2, 1.

3. 4, 3, 3, 2, 2.

4. 3, 3, 3, 2, 2.

5. 3, 3, 3, 3, 2.

6. 5, 3, 2, 2, 2.

1. 3, 3, 2, 2, 2
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2. 4, 4, 3, 2, 1. It does not exist. (One vertice v1 which has degree 4, then there is
one edge between v1 and the others vertices. Also there is an other vertice v2
which has degree 4, then there is one edge between v2 and the others vertices.
Then the minimum of degree is 2 and not 1).

3. 4, 3, 3, 2, 2.

4. It does not exist. (The number of vertives with odd edges is odd).

5. 3, 3, 3, 3, 2.

6. 5, 3, 2, 2, 2. It does not exist. (The order is 5 and one vertive has degree 5).

2.3 Directed Graphs

Definition 2.9
The in-degree of a vertex a, denoted deg −(a), is the number of edges directed into a.
The out-degree of a, denoted deg +(a), is the number of edges directed out of a. Note
that a loop at a vertex contributes 1 to both in-degree and out-degree.

Example 9 :

•a

•b •
c

•
d

•e

In the graph we have: deg −(a) = 1, deg +(a) = 2, deg −(b) = 2, deg +(b) = 3,
deg −(c) = 2, deg +(c) = 2, deg −(d) = 4, deg +(d) = 3, deg −(e) = 1, deg +(e) = 0.

Theorem 2.10
Let G = (V,E) be a directed graph. Then:

|E| =
∑
v∈V

deg −(v) =
∑
v∈V

deg +(v).



8 CHAPTER 1. GRAPH THEORY

Proof The first sum counts the number of outgoing edges over all vertices and the
second sum counts the number of incoming edges over all vertices. Both sums must
be |E|.

3 Special Types of Graphs

Definition 3.1
A null graph (or totally disconnected graph) is one whose edge set is empty. (A null
graph is just a collection of points.)

3.1 Complete Graphs

A complete graph on n vertices, denoted by Kn, is the simple graph that contains
exactly one edge between each pair of distinct vertices.

•
K1

• •
K2

• •

•

K3

• •

• •

K4

• •

••

•

K5

3.2 Cycles

A cycle for n ≥ 3 consists of n vertices v1, v2,. . . , vn, and edges {v1, v2}, {v2, v3} ,. . . ,
{vn−1, vn}, {vn, v1}.

• •

•

C3

• •

• •

C4

• •

••

•

C5

• •

•

••

•

C6

3.3 The Wheel Graph

The wheel graph Wn (n ≥ 3) is obtained from Cn by adding a vertex a inside Cn and
connecting it to every vertex in Cn.

• •

•

•

W3

• •

• •

•

W4

• •

••

•

•

W5

• •

•

••

• •

W6
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3.4 n−Cubes

An n−dimensional hypercube, or n−cube, is a graph with 2n vertices representing
all bit strings of length n, where there is an edge between two vertices if and only if
they differ in exactly one bit position.

• •
Q1

• •

••

Q2 001010

110

100

101011

111

000

4 Bipartite graphs

4.1 Bipartite Graphs

Definition 4.1
A bipartite graph is an (undirected) graph G = (V,E) whose vertices can be partitioned
into two disjoint sets (V1, V2), with V1 ∩ V2 = ∅ and V1 ∪ V2 = V , such that for every
edge e ∈ E, e = {a, b} such that a ∈ V1 and b ∈ V2.

In other words, every edge connects a vertex in V1 with a vertex in V2. Equiv-
alently, a graph is bipartite if and only if it is possible to color each vertex red or blue
such that no two adjacent vertices have the same color.

Definition 4.2
An equivalent definition of a bipartite graph is one where it is possible to color the
vertices either red or blue so that no two adjacent vertices are the same color.

a b

c

d

e
f

g

F

•a •b

• c
•
d

•
e

•
f

G

F is bipartite. V1 = {a, b, d}, V2 = {c, e, f, g}.
In G if we color a red, then its neighbors f and b must be blue. But f and b are
adjacent. G is not bipartite

Example 10 :
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a1

a2a3

a4

a5 a6C6

a1

a2

a3
C3

C6 is bipartite. Partition the vertex set of C6 into V1 = {a1, a3, a5} and
V2 = {a2, a4, a6}.
If we partition vertices of C3 into two nonempty sets, one set must contains two
vertices. But every vertex is connected to every other. So, the two vertices in the
same partition are connected. Hence, C3 is not bipartite.

Theorem 4.3
Let G be a graph of n vertices. Then G is bipartite if and only if it contains no cycles
of odd length.

4.2 Complete Bipartite Graphs

Definition 4.4
A complete bipartite graph is a graph that has its vertex set partitioned into two subsets
V1 of size m and V2 of size n such that there is an edge from every vertex in V1 to
every vertex in V2.

Example 11 :

K2,3 K3,3 K3,5

5 Subgraphs

5.1 Subgraphs

Definition 5.1
A subgraph of a graph G = (V,E) is a graph (W,F ), where W ⊂ V and F ⊂ E.
A subgraph F of G is a proper subgraph of G if F 6= G.

5.2 Induced Subgraphs

Definition 5.2
Let G = (V,E) be a graph. The subgraph induced by a subset W of the vertex set V
is the graph H = (W,F ), whose edge set F contains an edge in E if and only if both
endpoints are in W .
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a c

degh

F = K2,4

a b c

defgh

K3,5

K2,4 is the subgraph of K3,5 induced by W = {a, c, e, g, h}.

6 Representing Graphs and Graph Isomorphism

6.1 Representing Graphs: Adjacency Lists

Definition 6.1
An adjacency list represents a graph (with no multiple edges) by specifying the vertices
that are adjacent to each vertex.

Example 12 :

•a •b •c

•
e

•
d

•
f

G

An adjacency list for a simply graph
Vertex Adjacent vertices
a b, d, e
b a, c, e, d, f
c b
d a, b, e, f
e a, b, d
f b, d

Example 13 :

•a

•b •c

•
d

•e

An adjacency list for a directed graph
Initial vertex Terminal vertices

a b, d
b a, c, d
c c, d
d b, d, e
e
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6.2 Representation of Graphs: Adjacency Matrices

Definition 6.2
Let G = (V,E) be a simple graph where |V | = n. If a1, a2, . . . , an are the vertices
of G. The adjacency matrix, A, of G, with respect to this listing of vertices, is the
n×n matrix with its (i, j)th entry is 1 if ai and aj are adjacent, and 0 if they are not
adjacent. (A = (ai,j), with ai,j = 1 if {ai, aj} ∈ E and ai,j = 0 if {ai, aj} 6∈ E.)

Example 14 :

•a •b

•
e

•
d

•
c

G

The adjacency matrix is


0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0


The adjacency matrix of an undirected graph is symmetric: Also, since there

are no loops, each diagonal entry is zero:

Example 15 :
The adjacency matrix for the following pseudograph is:

•a

•b •c

•
d

•e 
0 2 0 1 0
2 0 1 2 0
0 1 1 1 0
1 2 1 2 1
0 0 0 1 0


6.3 Isomorphism of Graphs

Definition 6.3
Two (undirected) graphs G1 = (V1, E1) and G2 = (V2, E2) are called isomorphic if
there is a bijection, f :V1 −→ V+2, with the property that for all vertices a, b ∈ V1

{a, b} ∈ E1 ⇐⇒ {f(a), f(b)} ∈ E2.

Such a function f is called an isomorphism.

The following graphs are isomorphic.



6. REPRESENTING GRAPHS AND GRAPH ISOMORPHISM 13

a

b c

d

e

d′

a′ b′

c′

e′

The following graphs are isomorphic.

a e c

dbf d′

a′ b′

c′

f ′
e′

a
′′

d
′′

b
′′

c
′′

e
′′

f
′′

Theorem 6.4
Let f be an isomorphism of the graph G1 = (V1, E1) to the graph G2 = (V2, E2). Let
v ∈ V1. Then deg (v) = deg (f(v). i.e., isomorphism preserves the degree of vertices.

Proof A point u ∈ V1 is adjacent to v inG1 if and only if f(u) is adjacent to f(v) inG2.
Also f is bijection. Hence the number of points in V1 which are adjacent to v is equal
to the number of points in V2 which are adjacent to f(v). Hence deg (v) = deg (f(v)).

Remarks 6.5

1. Two isomorphic graphs have the same number of points and the same number
of edges.

2. Two isomorphic graphs have equal number of points with a given degree.
However these conditions are not sufficient to ensure that two graphs are iso-
morphic.

Example 16 :
Consider the two graphs given in figure below. Under any isomorphism d must cor-
respond to c′, a, e, f must correspond to a′, d′, f ′ in some order. The remaining two
points b, c are adjacent whereas b′, e′ are not adjacent. Hence there does not exist an
isomorphism.

a b c d

e

f a′ b′ c′

d′

e′ f ′
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7 Connectedness in undirected graphs

7.1 Paths (in undirected graphs)

Informally, a path is a sequence of edges connecting vertices.

Definition 7.1

1. For an undirected graph G = (V,E), an integer n ≥ 0, and vertices a, b ∈ V , a
path of length n from a to b in G is a sequence: x0, e1, x1, e2, . . . , xn−1, en, xn of
interleaved vertices xj ∈ V and edges ei ∈ E, such that x0 = a and xn = b, and
such that ei = {xi−1, xi} ∈ E for all i ∈ {1, . . . , n}.
Such path starts at a and ends at b.
The trivial path from v to v consists of the single vertex v.

Definition 7.2

2. A path of length n ≥ 1 is called a circuit (or cycle) if n ≥ 1 and the path starts
and ends at the same vertex, i.e., a = b.

3. A path or circuit is called simple if it does not contain the same edge more than
once.

Remarks 7.3

1. When G = (V,E) is a simple undirected graph a path x0, e1, . . . , en, xn is deter-
mined uniquely by the sequence of vertices x0, x1, . . . , xn. So, for simple undi-
rected graphs we can denote a path by its sequence of vertices x0, x1, . . . , xn.

2. Don’t confuse a simple undirected graph with a simple path. There can be a
simple path in a non-simple graph, and a non-simple path in a simple graph.

•a •b •c

•
d

•
e

•
f

1. d, a, b, c, f is a simple path of length 4.

2. d, e, c, b, a, d is a simple circuit of length 5.

3. d, a, b, c, f, b, a, e is a path, but it is not a simple path, because the edge {a, b}
occurs twice in it.

4. c, e, a, d, e, f is a simple path, but it is not a tidy path, because vertex e occurs
twice in it.
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7.2 Paths in directed graphs

Definition 7.4

1. For a directed graph G = (V,E), an integer n ≥ 0, and vertices a, b ∈ V , a path
of length n from a to b in G is a sequence of vertices and edges x0, e1, x1, e2, . . . , xn, en,
such that x0 = a and xn = b, and such that ei = (xi−1, xi) ∈ E for all
i ∈ {1, . . . , n}.

2. When there are no multi-edges in the directed graph G, the path can be denoted
(uniquely) by its vertex sequence x0, x1, . . . , xn.

3. A path of length n ≥ 1 is called a circuit (or cycle) if the path starts and ends
at the same vertex, i.e., a = b.

Definition 7.5

4. A path or circuit is called simple if it does not contain the same edge more than
once. (And we call it tidy if it does not contain the same vertex more than once,
except possibly the first and last in case a = b and the path is a circuit (cycle).)

7.3 Connectedness in undirected graphs

Definition 7.6
An undirected graph G = (V,E) is called connected, if there is a path between every
pair of distinct vertices. It is called disconnected otherwise.

•A

•D

•B

•
C

This graph is connected

Theorem 7.7
A graph G is connected if and only if for any partition of V into subsets V1 and V2
there is an edge joining a vertex of V1 to a vertex of V2.

Theorem 7.8
There is always a simple, and tidy, path between any pair of vertices a, b of a connected
undirected graph G.

Proof By definition of connectedness, for every pair of vertices a, b, there must exist
a shortest path x0, e1, x1, . . . , en, xn in G such that x0 = a and xn = b. Suppose this
path is not tidy, and n ≥ 1. (If n = 0, the Proposition is trivial.) Then xj = xk
for some 0 ≤ j < k ≤ n. But then x0, e1, x1, . . . , xj, ek+1, xk+1, . . . , en, xn is a shorter
path from a to b, contradicting the assumption that the original path was shortest.



16 CHAPTER 1. GRAPH THEORY

7.4 Connected Components of Undirected Graphs

Definition 7.9
A connected component H = (V ′, E ′) of a graph G = (V,E) is a maximal connected
subgraph of G, meaning H is connected and V ′ ⊂ V and E ′ ⊂ E, but H is not a
proper subgraph of a larger connected subgraph R of G.

• •A B
•C

•
D

•E •F

•
G

•H

•
I

This graph, G = (V,E), has 3 connected components. (It is thus a discon-
nected graph.)

7.5 Connectedness in Directed Graphs

Definition 7.10

1. A directed graph G = (V,E) is called strongly connected, if for every pair of
vertices a and b in V , there is a (directed) path from a to b, and a directed path
from b to a.

2. (G = (V,E) is weakly connected if there is a path between every pair of vertices
in V in the underlying undirected graph (meaning when we ignore the direction
of edges in E.) A strongly connected component of a directed graph G, is a
maximal strongly connected subgraph H of G which is not contained in a larger
strongly connected subgraph of G.

•a •b •c

•
d

•
e

•
f

This digraph, G, is not strongly connected, because, for example, there is no
directed path from e to b.
One strongly connected component of G is H = (V1, E1), where V1 = {a, c, d, e, f}
and E1 = {(a, e), (e, c), (c, f), (f, e), (e, d), (d, a)}.

8 Paths and Isomorphism

8.1 Paths and Isomorphism

There are several ways that paths and circuits can help determine whether two graphs
are isomorphic. For example, the existence of a simple circuit of a particular length
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is a useful invariant that can be used to show that two graphs are not isomorphic. In
addition, paths can be used to construct mappings that may be isomorphisms. As
we mentioned, a useful isomorphic invariant for simple graphs is the existence of a
simple circuit of length k, where k is a positive integer greater than 2.

Let G and H be the following graphs.

a1

a2

a3

a4

a5

a6

G

b1

b2

b3

b4

b5

b6

H

Both G and H have six vertices and eight edges. Each has 4 vertices of degree
3, and two vertices of degree 2. So, the three invariants number of vertices, number of
edges, and degrees of vertices all agree for the two graphs. However, H has a simple
circuit of length 3, namely, b1, b2, b6, b1, whereas G has no simple circuit of length 3.
Then G and H are not isomorphic.

Example 17 :
Let G and H be the following graphs.

a1

a2

a3

a4a5

G

b1

b5 b4

b3

b2

H

Both G and H have 5 vertices and 6 edges, both have 2 vertices of degree 3
and 3 vertices of degree 2, and both have a simple circuit of length 3, a simple circuit
of length 4, and a simple circuit of length 5.

Because all these isomorphic invariants agree, G and H may be isomorphic.
To find a possible isomorphism, we can follow paths that go through all vertices so
that the corresponding vertices in the two graphs have the same degree. For example,
the paths a1, a4, a3, a2, a5 in G and b3, b2, b1, b5, b4 in H both go through every
vertex in the graph, start at a vertex of degree 3, go through vertices of degrees 2,
three, and two, respectively, and end at a vertex of degree 2. By following these paths
through the graphs, we define the mapping f with f(a1) = b3, f(a4) = b2, f(a3) = b1,
f(a2) = b5, and f(a5) = b4.

Determine which of the graphs are isomorphic.
a

b

c

d e fg a

b
c

d

e f

g
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a

bc
d

e
f

g

a

bc
d

e fg

9 Counting Paths Between Vertices

9.1 Counting Paths Between Vertices

The number of paths between two vertices in a graph can be determined using its
adjacency matrix.

Theorem 9.1
Let G be a graph with adjacency matrix A with respect to the ordering b1, b2, . . . , bn of
the vertices of the graph (with directed or undirected edges, with multiple edges and
loops allowed). The number of different paths of length r from bi to bj, where r is a
positive integer, equals the (i, j)th entry of Ar.

Example 18 :
How many paths of length four are there from a to d in the simple graph G

•a •b

•
d

•
c

The adjacency matrix of G (ordering the vertices as a, b, c, d) is

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

.

Hence, the number of paths of length 4 from a to d is the (1, 4)th entry of A4.

Because A =


8 0 0 8
0 8 8 0
0 8 8 0
8 0 0 8

.

There are exactly eight paths of length four from a to d. By inspection of the graph, we
see that a, b, a, b, d; a, b, a, c, d; a, b, d, b, d; a, b, d, c, d; a, c, a, b, d; a, c, a, c, d; a, c, d, b, d;
and a, c, d, c, d are the eight paths of length four from a to d.
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10 Exercises

Exercise 1 :
In each of the following graphs, find paths of length 9 and 11, and cycles of length
5, 6, 8 and 9, if possible.

3

2

1

5 4

8
7

6

10 9

3

2

1

5 4

8
7

6

10 9

11

Solution of Exercise 1:
G1: Path of length 9: 1 2 3 4 5 10 7 9 6 8. There are no paths of length 11 because
G1 has order 10.
Cycles: 1 2 3 4 5 1, 1 2 3 8 10 5 1, 1 6 8 10 7 9 4 5 1, 1 2 3 4 9 7 10 8 6 1.
G2: 1 2 3 4 5 10 6 7 8 9. There are no paths of length 11 because G2 has order 11.
Cycles: 1 2 3 4 5 1, 5 10 6 11 9 4 5, 2 3 4 5 10 9 8 7 2, 5 1 2 3 4 9 11 6 10 5.
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Exercise 2 :

Solution of Exercise 2:

Exercise 3 :
A graph is self-complementary if it is isomorphic to its complement.

1. How many edges does a self-complementary graph of order n have?

2. Prove that if n is the order of a self-complementary graph, then n is congruent
with 0 or with 1 modulo 4.

3. Check that for n = 4k with k ≥ 1, the following construction yields a self-
complementary graph of order n, let us take V = V1 ∪ V2 ∪ V3 ∪ V4, where each
Vi contains k vertices, the vertices of V1 and V2 induce complete graphs, also,
we have all edges between V1 and V3, between V3 and V4, and between V4 and
V2.

4. How could we modify the previous construction to build a self-complementary
graph of order 4k + 1?

Solution of Exercise 3:

Exercise 4 :

Solution of Exercise 4:

Exercise 5 :
Consider a graph G = (V,E) of order n and size m. Let v be a vertex and e an edge
of G. Give the order and the size of Ḡ = Gc, G− v and G− e.
Solution of Exercise 5:

The order of Ḡ = Gc is the order of G. The size of Ḡ = Gc is
n(n+ 1)

2
−m.

The order of G− v is n− 1. The size of G− v is m− deg (v).
The order of G− e is n. The size of G− e is m− 1.

Exercise 6 :
Give the set of edges and a drawing of the graphs K3 ∪ P3 and K3 × P3, assuming
that the sets of vertices of K3 and P3 are disjoint.

Solution of Exercise 6:

1. K3 ∪ P3, E = {ab, ac, bc, 12, 23}

a

b

c

K3

1

3

2

P3
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2. K3 × P3

(1, a)
(2, a)

(3, a)

(1, b)
(2, b)

(3, b)

(1, c)
(2, c)

(3, c)

E = {(1, a)(1, b); (1, a)(1, c); (1, a)(2, a); (1, b)(1, c); (1, b)(2, b); (1, c)(2, c); (2, a)(2, b);

(2, a)(2, c); (2, a)(3, a); (3, a)(3, b); (3, a)(3, c); (3, b)(3, c)}

Exercise 7 :
Consider the graphs G1 = (V1, E1) and G2 = (V2, E2). Give the order, the degree of
the vertices and the size of G1 ×G2 in terms of those of G1 and G2.

Solution of Exercise 7:
The order of G1 × G2 is |V1| |V2|, deg G1×G2(v) = deg G1(v) + deg G2(v) and size
|V1| |E2|+ |V2| |E1|.
Exercise 8 :
For each of the following sequences, find out if there is any graph of order 5 such that
the degrees of its vertices are given by that sequence. If so, give an example.

1. 3, 3, 2, 2, 2

2. 4, 4, 3, 2, 1.

3. 4, 3, 3, 2, 2.

4. 3, 3, 3, 2, 2.

5. 3, 3, 3, 3, 2.

6. 5, 3, 2, 2, 2.

Solution of Exercise 8:

1. 3, 3, 2, 2, 2

2. 4, 4, 3, 2, 1. It does not exist. (One vertice v1 which has degree 4, then there is
one edge between v1 and the others vertices. Also there is an other vertice v2
which has degree 4, then there is one edge between v2 and the others vertices.
Then the minimum of degree is 2 and not 1).

3. 4, 3, 3, 2, 2.



22 CHAPTER 1. GRAPH THEORY

4. It does not exist. (The number of vertives with odd edges is odd).

5. 3, 3, 3, 3, 2.

6. 5, 3, 2, 2, 2. It does not exist. (The order is 5 and one vertive has degree 5).

Exercise 9 :
Let V = {a, b, c, d, e, f}, E = {ab, af, ad, be, de, ef} and G = (V,E). Determine all
the subgraphs of G of order 4 and size 4.

Solution of Exercise 9:

a

b

c

d

ef

({a, b, e, d}, {ab, be, ed, da})
({a, b, e, f}, {ab, be, ef, fa})
({a, d, e, f}, {ad, de, ef, fa})

Exercise 10 :
Prove that if a graph is regular of odd degree, then it has even order.

Solution of Exercise 10:
If the graph is of order n and regular of 2p + 1 degree, then (2p + 1) must be evn,
then n is even.

Exercise 11 :
Let G be a bipartite graph of order n and regular of degree d ≥ 1. Which is the size
of G? Could it be that the order of G is odd?

Solution of Exercise 11:
The size of G is 2d. The order of G is 2d.

Exercise 12 :

Prove that the size of a bipartite graph of order n is at most
n2

4
.

Solution of Exercise 12:
If n = p + q is the order of G and p is the order of V1 and q is the order of V2. The
size of G is p(n − p). The minimum of p(n − p) is reached for p = n

2
. Then the size

of G is at most
n2

4
.

Exercise 13 :
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Let G = (V,E) and H = (W,B) be two graphs. Prove that G and H are isomorphic
if, and only if, Ḡ and H̄ are isomorphic.

Solution of Exercise 13:

Exercise 14 :
Let G be a graph with order 9 so that the degree of each vertex is either 5 or 6. Prove
that there are either at least 5 vertices of degree 6 or at least 6 vertices of degree 5.

Solution of Exercise 14:

Exercise 15 :
Let G be a (p, q) graph all of whose points have degree k or k + 1. If G has m > 0
points of degree k, show that m = p(k + 1)− 2q. (A graph with p points and q lines
is called a (p, q) graph).

Solution of Exercise 15:
Since G has m points of degree k, the remaining p − m points have degree k + 1.

Hence
∑
v∈V

deg (v) = mk + (p−m)(k + 1) = 2q. Then m = p(k + 1)− 2q.

Exercise 16 :
Show that in any group of two or more people, there are always two with exactly the
same number of friends inside the group.

Solution of Exercise 16:
We construct a graph G by taking the group of people as the set of points and joining
two of them if they are friends, then deg (v) is equal to number of friends of v and
hence we need only to prove that at least two points of G have the same degree. Let
V (G) = {v1, v2, . . . , vp}. Clearly 0 ≤ deg (vi) ≤ p − 1 for each i. Suppose no two
points of G have the same degree. Then the degrees of v1, v2, . . . , vp. are the integers
0, 1, 2, . . . , p − 1 in some order. However a point of degree p − 1 is joined to every
other point of G and hence no point can have degree zero which is a contradiction.
Hence there exist two points of G with equal degree.

Exercise 17 :
Prove that δ ≤ 2q/p ≤ ∆.

Solution of Exercise 17:
Let V (G) = {v1, v2, . . . , vp}. We have δ ≤ deg (vi) ≤ ∆ for all i. Hence pδ ≤∑p

i=1 deg (vi) ≤ p∆. Then pδ ≤ 2q ≤ p∆ (by Handshaking Theorem). We deduce
that δ ≤ 2q/p ≤ ∆.

Exercise 18 :
Let G be a k−regular bibgraph with bipartion (V1, V2) and k > 0. Prove that |V1| =
|V2| .

Solution of Exercise 18:
Since every line of G has one end in V1 and other end in V2 it follows that

∑
v∈V1

deg (v) =∑
v∈V2

deg (v) = q. Also deg (v) = k for all v ∈ V = V1 ∪ V2. Hence
∑
v∈V1

deg (v)k|V1| and
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v∈V2

deg (v) = k|V2| so that k|V1| = k|V2|. Since k > 0, we have |V1| = |V2|.

Exercise 19 :
Let V = {1, 2, 3, . . . , n}. Let X = {{i, j}; i, j ∈ V and are relatievly prime}. The
resulting graph (V,X) is denoted by Gn. Draw G4 and G5.

Solution of Exercise 19:

1

2 3

4

W4

1

2 3

4

5

W5

Exercise 20 :
Let G be a graph with minimum degree p > 1. Prove that G contains a cycle of
length at least p+ 1.

Solution of Exercise 20:
Let v1, . . . , vk be a maximal path in G, k ≥ m + 1 and the path has length at least
m.
The neighbor of v1 that is furthest along the path must be vj with j ≥ m+ 1. Then
v1, . . . , vj, v1 is a cycle of length at least m+ 1.

Exercise 21 :
Show that every graph on at least two vertices contains two vertices of equal degree.

Solution of Exercise 21:
Suppose that the n vertices all have different degrees, and look at the set of degrees.
Since the degree of a vertex is at most n−1, the set of degrees must be {0, 1, 2, . . . , n−
2, n− 1}.

But that’s not possible, because the vertex with degree n − 1 would have to
be adjacent to all other vertices, whereas the one with degree 0 is not adjacent to any
vertex.

Exercise 22 :
• The null graph of order n, denoted by Nn, is the graph of order n and size 0. The
graph N1 is called the trivial graph.
• The complete graph of order n, denoted by Kn, is the graph of order n that has all
possible edges. We observe that K1 is a trivial graph too.
• The path graph of order n, denoted by Pn = (V,E), is the graph that has as a set
of edges E = {x1x2, x2x3, . . . , xn−1xn}.
• The cycle graph of order n ≥ 3, denoted by Cn = (V,E), is the graph that has as
a set of edges E = {x1x2, x2x3, . . . , xn−1xn, xnx1}.
• The wheel graph of order n ≥ 4, denoted by Wn = (V,E), is the graph that has as
a set of edges E = {x1x2, x2x3, . . . , xn−1x1, xnx1} ∪ {xnx1, xnx2, . . . , xnxn−1}
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•
For each of the graphs Nn, Kn, Pn, Cn and Wn, give:

1. a drawing for n = 4 and n = 6,

2. the adjacency matrix for n = 5,

3. the order, the size, the maximum degree and the minimum degree in terms of
n.

Solution of Exercise 22:

1. N4 T4 K4 C4 W4

N6 T6 K6 C6 W6

2. MN5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 MK5 =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0



MP5 =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 MC5 =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 MW5 =


0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0


3. For a n ≥ 3
Nn = (V,E), |V | = n, —E— = 0, δ(Nn) = 0,∆(Nn) = 0.
Kn = (V,E), |V | = n, |E| = C2

n, δ(Kn) = n− 1, ∆(Kn) = n− 1.
Pn = (V,E), |V | = n, |E| = n− 1, δ(Pn) = 1, ∆(Pn) = 2.
Cn = (V,E), |V | = n, |E| = n, δ(Cn) = 2, ∆(Cn) = 2.
Wn = (V,E), |V | = n, |E| = 2n− 2, δ(Wn) = 3, ∆(Wn) = n− 1.

Exercise 23 :

1. Is Cn a subgraph of Kn?

2. For what values of n and m is Kn, n a subgraph of Km?
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3. For what n is Cn a subgraph of Kn,n?

Solution of Exercise 23:

1. Yes! (by definition of subgraph , or just simply by the fact that Kn has all the
possible edges a graph on n vertices can have.)

2. We must have m = |V (Km)|, |V (Kn,n)| = 2n. On the other hand, by a similar
reasoning as part (1), we get that the statement holds for all m, n with m ≥ 2n.

3. First, note that a bipartite graph cannot have any cycle of odd length, so n
cannot be odd. For even n, one can check that Kn,n has a cycle of length n.

Exercise 24 :
Given a graph G with vertex set V = {v1, . . . , vn} we define the degree sequence of
G to be the list deg (v1), . . . , deg (vn) of degrees in decreasing order. For each of the
following lists, give an example of a graph with such a degree sequence or prove that
no such graph exists:

1. 3, 3, 2, 2, 2, 1

2. 6, 6, 6, 4, 4, 3, 3

3. 6, 6, 6, 4, 4, 2, 2

4. 6, 6, 6, 6, 5, 4, 2, 1

Solution of Exercise 24:

1. There is no such graph, since the number of odd-degree vertices in a graph is
always even.

2. Consider the following graph:

3. No, since otherwise we have 3 vertices of degree 6 which are adjacent to all other
vertices of the graph, so each vertex in the graph must be of degree at least 3.

4. No! Note that each vertex of the degree 6 is adjacent to all but one other
vertices. In particular, each such vertex is adjacent to at least one of v1 and v2
(where deg (v1) = 1 and deg (v2) = 2). But that would mean at least four edges
touching v1 or v2, contradicting deg (v1) + deg (v2) = 3 < 4.
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Exercise 25 :
Construct two graphs that have the same degree sequence but are not isomorphic.

Solution of Exercise 25:
Let F be of a cycle on 6 vertices, and let G be the union of two disjoint cycles on
3 vertices each. In both graphs each vertex has degree 2, but the graphs are not
isomorphic, since one is connected and the other is not.

Exercise 26 :
A graph is k−regular if every vertex has degree k. Describe all 1−regular graphs and
all 2−regular graphs.

Solution of Exercise 26:
A 1−regular graph is just a disjoint union of edges. A 2−regular graph is a disjoint
union of cycles.

Exercise 27 :

Solution of Exercise 27:

Exercise 28 :
Draw an example graph for each of these.

1. A planar graph has 5 vertices and 3 faces. How many edges does it have?

2. A planar graph has 7 edges and 5 faces. How many vertices does it have?

Solution of Exercise 28:
We use Euler’s formula: V + F = E + 2.

1. There are E = V + F − 2 = 6 edges. Here’s an example: (Note that the outer
face is also counted!)

2. There should be V = E − F + 2 = 4 vertices. However, this is not possible
without creating duplicate edges. With duplicate edges, it is possible, and the
formula gives the correct answer if we count the space between two duplicate

edges also as a face. Here’s an example:

Note, however, that this is not a graph, but a multigraph.
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Exercise 29 :
Answer for each of these graphs: Is it planar? Is it bipartite?

a

b

c

d

e

f a

b

c

d

e

f a

b

c

d

e

f a

b

c

d

e

f

Solution of Exercise 29:

1. This graph is planar, since there are no edge crossings in its drawing. It is not
bipartite, since it has a cycle of odd length (a, b, c).

2. This graph is planar: we can flip part of the graph to obtain a planar graph as
follows. It is also bipartite, since we can colour all vertices with two colours.

a

b

c

e

d

f

3. This graph is not planar: it has 6 vertices and 14 edges, and by Euler’s formula
a planar graph with 6 vertices can have at most 3V − 6 = 12 edges. It is also
not bipartite, since it contains triangles.

4. This graph is planer, as can be seen in this drawing of the same graph. It is
not bipartite, since it contains triangles.

Exercise 30 :
Draw diagrams to represent each of the graphs whose adjacency matrix is given below.
Write down the degree of each vertex, and state whether the graph is (a) simple; (b)
regular.

1.


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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2.


0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 1
1 0 1 0 1 0



3.


1 2 0 2 1
2 1 2 0 1
0 2 1 2 1
2 0 2 1 1
1 1 1 1 0


Exercise 31 :
Decide whether there exists a graph with four vertices of degrees 1, 2, 3, and 3.

Solution of Exercise 30:
The Handshake Theorem states that the number of edges of the graph is 8 =
0 + 2 + 2 + 3 + 9

2
.

Exercise 32 :
Decide whether there exists a graph with four vertices of degrees 1, 2, 3, and 3.

Solution of Exercise 31:
The graph does not exist because 1 + 2 + 3 + 3 = 9 by Handshake Theorem.
Also there is not such a graph because, there is an even number of vertices of odd
degree in any graph, hence there cannot be 3.

Exercise 33 :
Decide whether there exists a graph with 5 vertices of degree 1, 2, 3, 3, and 5, respec-
tively.

Solution of Exercise 32:

Yes.

•a •b

•c

•d

•e
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Exercise 34 :
Is there a simple graph G with four vertices of degrees 1, 2, 3, and 4?

Solution of Exercise 33:
Such a graph does not exist. A vertex v with deg (v) = 4 needs to be connected to 4
distinct vertices, since a simple graph is not allowed to have loops or parallel edges.

Exercise 35 :
Simple graph with six edges and all vertices of degree 3.

Solution of Exercise 34:
For having all vertices of degree 3, the graph should have 4 vertices with two diago-
nals.

Exercise 36 :
Is there a simple graph, each of whose vertices has even degree?

Solution of Exercise 35:
Yes. Consider a graph that forms a geometric figure, e.g., a triangle. This is a simple
circuit and each vertex has degree 2.

Exercise 37 :
Recall that Kn denotes a complete graph on n vertices, that is, a simple graph with
n vertices and exactly 1 edge between each pair of distinct vertices. Show that for all

integers n ≥ 1, the number of edges of Kn is
n(n− 1)

2
.

Solution of Exercise 36:
The statement can be proved by induction, since Kn+1 can be obtained starting from
Kn and by adding a vertex and connecting it to the other n vertices. K1 has 1 vertex
and 0 edges = 1.0

2
.

Assume that Kn has
n(n− 1)

2
edges. Kn+1 is obtained by Kn adding an

(n + 1)th vertex, and connecting it with all the other n vertices through n distinct

edges. Therefore Kn+1 has n+
n(n− 1)

2
edges, that is

n(n+ 1)

2
.

Alternatively, use the Handshake Theorem: 2 times number of edges of G =
deg (G) =

∑n
i=1 deg (vi). Since, by definition, vi has (n − 1) edges (1 for each of the

other (n−1) vertices), then, for each i = 1 . . . n, deg (vi) = (n−1). Therefore, 2 times

the number of edges of G = n(n− 1), that is, the number of edges of G = n(n−11)
2

.

Exercise 38 :
Consider the following graph G

•a •b •c •de1

e2

e3

e4

e5

1. How many paths are there from v1 to v4?

2. How many trails are there from v1 to v4?

3. How many walks are there from v1 to v4?
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Solution of Exercise 37:
Remember what follows:

1. A walk from a vertex v to a vertex w is a finite alternating sequence of adjacent
vertices and edges of G.

2. A trail from a vertex v to a vertex w is a walk from v to w that does not contain
a repeated edge.

3. A path from a vertex v to a vertex w is a trail from v to w that does not contain
a repeated vertex.

1. G has 3 paths,

2. G has 3 + 3! trails,

3. G has infinitely many walks.


