Multiple Choice

1) In an insulated coffee-cup calorimeter 100.0 g sample of water was placed at $100.0^{\circ} \mathrm{C}$, and a 35.0 g piece of certain metal at $25.0^{\circ} \mathrm{C}$ was immediately immersed in the water. The temperature of the water-metal system came to $95.5^{\circ} \mathrm{C}$. Knowing that the specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, calculate (in $\mathrm{J} / \mathrm{g}{ }^{\circ} \mathrm{C}$) the specific heat of that metal.
A) 0.946
B) 0.825
C) 0.763
D) 0.687
2) Naphthalene combustion can be used to calibrate the heat capacity of a bomb calorimeter. The heat of combustion of naphthalene is $-40.0 \mathrm{~kJ} / \mathrm{g}$. When 0.750 g sample of naphthalene was completely burned inside a constant-volume bomb calorimeter that contains an adequate amount of water, a temperature rise of $6.0^{\circ} \mathrm{C}$ was observed. Calculate the total heat capacity (in $\mathrm{kJ} /{ }^{\circ} \mathrm{C}$) of this calorimeter.

A) $\quad 6.00$
B) 5.50
C) $\quad 5.00$
D) 4.50
3) The combustion of glucose $" \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ " produces heat energy according to:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\ell) \quad \Delta H_{r x n}^{o}=-2802.8 \mathrm{~kJ}$
Given: $\quad \Delta H_{f}^{o}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta H_{f}^{o}\left[\mathrm{H}_{2} \mathrm{O}(\ell)\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$
Calculate (in $\mathrm{kJ} / \mathrm{mol}$) the heat of formation of glucose " ΔH_{f}^{o} " (glucose).
A) -2448
B) -2226
C) -1885
D) $\quad-1273$
4) The combustion of octane $" \mathrm{C}_{8} \mathrm{H}_{18}$ " releases heat energy according to:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\ell)+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\ell) \quad \Delta H_{r x n}^{o}=-11020.8 \mathrm{~kJ}
$$

How many grams of octane must be burned to supply 2413 kJ of heat energy.

A) 30
B) 50
C) 60
D) 80
5) A gas is compressed in a cylinder by a constant pressure of 10.0 atm from a volume of 40.0 L and at the same time this gas absorbs 200.0 J of heat energy. Knowing that the change in the internal energy $\Delta \mathrm{E}$ is 8306.0 J , what is the final volume (in L) of the gas?

A) 28
B) 30
C) 32
D) 34
6) At $25.0^{\circ} \mathrm{C}$, wet oxygen gas collected over water at a total pressure of 1.0 atm is soluble to the extent of $0.04 \mathrm{~g} / \mathrm{L}$. what would its solubility (in g / L) be if its partial pressure over water was 920.0 torr (knowing that the vapor pressure of water at $25.0^{\circ} \mathrm{C}$ is 24.0 torr).

B) $\quad 0.06$
C) $\quad 0.07$
D) 0.08
7) The vapor pressure of pure water at $32^{\circ} \mathrm{C}$ is 35.7 torr. What is the vapor pressure (in torr) over a solution prepared from 200.0 g of urea $" \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}$ " and 350.0 g of water at $32.0^{\circ} \mathrm{C}$.

A) 27.3
B) $\quad 29.4$
C) $\quad 28.6$
D) 30.5
8) Calculate the van't Hoff factor of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ in a 0.4 molal aqueous solution whose boiling point is $100.78^{\circ} \mathrm{C}$ (given K_{b} water $=0.52^{\circ} \mathrm{C} / \mathrm{m}$).

A) 3.86
B) $\quad 3.75$
C) 3.65
D) $\quad 3.44$
9) An aqueous solution of a certain protein contains 0.4 g per liter has an osmotic pressure of 3.73 torr at $26^{\circ} \mathrm{C}$. What is the approximate molar mass (in $\mathrm{g} / \mathrm{mol}$) of this protein?

A) 2000
B) 2500
C) 3000
D) 3500
10) For the reaction:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

It was found that at a particular instant, N_{2} was being formed at a rate of $1.2 \mathrm{~mol} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~s}^{-1}$. At what rate (in mol. $\mathrm{L}^{-1} . \mathrm{s}^{-1}$) was NH_{3} being consumed in the same time interval?

A) $\quad-2.4$
B) $\quad-1.8$
C) $\quad-0.8$
D) $\quad-0.6$
11) The decomposition of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ has the following rate law: Rate $=\mathrm{k}\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right]$ and at $550.0^{\circ} \mathrm{C}$ its half-life is 22.0 seconds. If the concentration of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ is $0.01 \mathrm{~mol} / \mathrm{L}$ after 1.0 minute, what was the initial concentration (in $\mathrm{mol} / \mathrm{L}$) of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$?

A) 0.066
B) 0.152
C) 0.196
D) 0.219
12) The reaction $\mathrm{CH}_{3} \mathrm{CO} \longrightarrow \mathrm{CH}_{3}+\mathrm{CO}$ follows a first order kinetics and has an activation energy of $70.0 \mathrm{~kJ} / \mathrm{mol}$. By what factor will the rate constant of this reaction increase when the temperature is raised from $10.0^{\circ} \mathrm{C}$ to $29.0^{\circ} \mathrm{C}$?
A) 3.8
B) 4.9
C) 5.2
D) 6.5

The answer:

1) For the rate law:

Rate $=\mathrm{k}[\mathrm{NO}]^{\mathrm{x}}\left[\mathrm{Br}_{2}\right]^{\mathrm{y}}$
[Br_{2}] was held constant at $0.50 \mathrm{~mol} / \mathrm{L}$ in experiments (1) and (2) while [NO] changed from $0.35 \mathrm{~mol} / \mathrm{L}$ to $0.10 \mathrm{~mol} / \mathrm{L}$.
$\frac{\text { the initial rate of experiment (1) }}{\text { the initial rate of experiment (2) }}=\frac{735 \mathrm{~mol} / \mathrm{L} . \mathrm{s} .}{60 \mathrm{~mol} / \text { L.s. }}=12.25=\frac{\mathrm{k}[\mathrm{NO}]^{\mathrm{x}}\left[\mathrm{Br}_{2}\right]^{\mathrm{y}}}{\mathrm{k}[\mathrm{NO}]^{\mathrm{x}}\left[\mathrm{Br}_{2}\right]^{\mathrm{y}}}$

$12.25=(3.5)^{x}=(3.5)^{2}$
The reaction is of second order in [NO].
In experiments (2) and (3), the [NO] was held constant at $0.10 \mathrm{~mol} / \mathrm{L}$ while $\left[\mathrm{Br}_{2}\right]$ changed from $0.50 \mathrm{~mol} / \mathrm{L}$ to $0.20 \mathrm{~mol} / \mathrm{L}$.
$\frac{\text { the initial rate of experiment (2) }}{\text { the initial rate of experiment (3) }}=\frac{60 \mathrm{~mol} / \text { L.s. }}{24 \mathrm{~mol} / \mathrm{L} . \mathrm{s} .}=2.5=\frac{\mathrm{k}[\mathrm{NO}]^{\mathrm{x}}\left[\mathrm{Br}_{2}\right]^{\mathrm{y}}}{\mathrm{k}[\mathrm{NO}]^{\mathrm{x}}\left[\mathrm{Br}_{2}\right]^{\mathrm{y}}}$
$=\frac{\not k[0.10 \mathrm{~mol} / \mathrm{L}]^{\mathrm{x}}[0.50 \mathrm{~mol} / \mathrm{L}]^{\mathrm{y}}}{\not\left\langle[0.10 \mathrm{~mol} / \mathrm{L}]^{\mathrm{x}}[0.20 \mathrm{~mol} / \mathrm{L}]^{\mathrm{y}}\right.}=(2.5)^{\mathrm{x}}$
Where " y " is 1.0. Therefore, the reaction is of first order in $\left[\mathrm{Br}_{2}\right]$, and the rate law is:
Rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]$
This reaction follows third order kinetics.
(1.0 mark)
2) The value of " k ": From any of the three given experiments, say experiment number (1).

$$
\begin{align*}
735 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{~s} & =\mathrm{k}(0.35 \mathrm{~mol} / \mathrm{L})^{2}(0.5 \mathrm{~mol} / \mathrm{L}) \\
& =\mathrm{k}\left(0.1225 \mathrm{~mol}^{2} \cdot \mathrm{~L}^{-2}\right)\left(0.5 \mathrm{~mol} . \mathrm{L}^{-1}\right) \\
& =\mathrm{k}\left(0.06125 \mathrm{~mol}^{3} \cdot \mathrm{~L}^{-3}\right)
\end{aligned} \quad \begin{aligned}
\mathrm{k}=\frac{735 \mathrm{~mol} . \mathrm{L}^{-1} \cdot \mathrm{~s}^{-1}}{0.06125 \mathrm{~mol}^{3} \mathrm{~L}^{-3}}=12000 \mathrm{~mol}^{-2} \cdot \mathrm{~L}^{2} \cdot \mathrm{~s}^{-1}
\end{align*}
$$

3) The initial rate $=12000 \mathrm{~mol}^{-2} \mathrm{~L}^{2} \mathrm{~s}^{-1}(0.30)^{2} \mathrm{~mol}^{2} \mathrm{~L}^{-2}(0.20 \mathrm{~mol} / \mathrm{L})$
$=12000 \times(0.3)^{2}(0.2) \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
$=216 \mathrm{~mol} . \mathrm{L}^{-1} \cdot \mathrm{~s}^{-1}$
(1.0 mark)
