Multiple Choice

 In an insulated coffee-cup calorimeter 100.0 g sample of water was placed at 100.0°C, and a 35.0 g piece of certain metal at 25.0°C was immediately immersed in the water. The temperature of the water-metal system came to 95.5°C. Knowing that the specific heat of water is 4.184 J/g °C, calculate (in J/g °C) the specific heat of that metal.

		A)	0.946	B)	0.825	C)	0.763	D)	0.687
	2)	Naph The h was adequ capac	thalene com neat of comb completely nate amount tity (in kJ/°C	bustion can bustion of r burned in of water, a) of this ca	n be used to aphthalene i side a cons temperature lorimeter.	o calibrate is –40.0 k stant-volu rise of 6.	the heat cap J/g. When 0 me bomb c 0°C was obse	pacity of a 750 g san alorimeter erved. Cal	bomb calorimeter. nple of naphthalene that contains an culate the total heat
		A)	6.00	B)	5.50	C)	5.00	D)	4.50
	3)) The combustion of glucose " $C_6H_{12}O_6$ " produces heat energy according to:							
		$C_6H_{12}O_6(s) + 6O_2(g) \longrightarrow 6CO_2(g) + 6H_2O(\ell)$ $\Delta H^o_{rxn} = -2802.8 \text{ kJ}$							02.8 kJ
		Given: $\Delta H_f^o[CO_2(g)] = -393.5 \text{ kJ/mol}, \Delta H_f^o[H_2O(\ell)] = -285.8 \text{ kJ/mol}$ Calculate (in kJ/mol) the heat of formation of glucose " ΔH_f^o " (glucose).							
	$\Big)$	A)	-2448	B)	-2226	C)	-1885	D)	-1273
	4)	4) The combustion of octane " C_8H_{18} " releases heat energy according to:							
		$2C_8H_{18}(\ell) + 25O_2(g) \longrightarrow 16CO_2(g) + 18H_2O(\ell)$ $\Delta H^o_{rxn} = -11020.8 \text{ kJ}$							020.8 kJ
	How many grams of octane must be burned to supply 2413 kJ o								ergy.
	\sum	A)	30	B)	50	C)	60	D)	80
	5)	A ga 40.0 chang	ts is comp L and at th ge in the inte	ressed in a e same tin rnal energy	cylinder by the this gas at ΔE is 8306	a constar absorbs 2 .0 J, what	nt pressure o 00.0 J of he is the final v	f 10.0 atm at energy olume (in	n from a volume of Knowing that the L) of the gas?
	$\Big)$	A)	28	B)	30	C)	32	D)	34
	6)	At 25 the ex was 9	5.0°C, wet of ktent of 0.04 920.0 torr (ki	xygen gas g/L. what nowing tha	collected ov would its so t the vapor p	er water a lubility (i ressure of	nt a total pres n g/L) be if i water at 25.	ssure of 1 its partial 0°C is 24.0	.0 atm is soluble to pressure over water) torr).
(A)	0.05	B)	0.06	C)	0.07	D)	0.08

7) The vapor pressure of pure water at 32° C is 35.7 torr. What is the vapor pressure (in torr) over a solution prepared from 200.0 g of urea " $CO(NH_2)_2$ " and 350.0 g of water at 32.0°C. 27.3 A) B) 29.4 C) 28.6 30.5 D) 8) Calculate the van't Hoff factor of Na_3PO_4 in a 0.4 molal aqueous solution whose boiling point is 100.78°C (given K_b water = 0.52°C/m). A) 3.86 B) 3.75 C) 3.44 3.65 D) 9) An aqueous solution of a certain protein contains 0.4 g per liter has an osmotic pressure of 3.73 torr at 26° C. What is the approximate molar mass (in g/mol) of this protein? A) 2000 B) 2500 C) 3000 D) 3500 10) For the reaction: $4NH_3(g) + 3O_2(g) \longrightarrow 2N_2(g) + 6H_2O(g)$ It was found that at a particular instant, N_2 was being formed at a rate of 1.2 mol.L⁻¹.s⁻¹. At what rate (in mol. L^{-1} .s⁻¹) was NH₃ being consumed in the same time interval? -2.4-1.8C) -0.8D) -0.6A) B) 11) The decomposition of C₂H₅Cl has the following rate law: Rate = $k[C_2H_5Cl]$ and at 550.0°C its half-life is 22.0 seconds. If the concentration of C₂H₅Cl is 0.01 mol/L after 1.0 minute, what was the initial concentration (in mol/L) of C_2H_5Cl ? A) 0.066 B) 0.152 C) 0.196 D) 0.219 The reaction $CH_3CO \longrightarrow CH_3 + CO$ follows a first order kinetics and has an 12) activation energy of 70.0 kJ/mol. By what factor will the rate constant of this reaction increase when the temperature is raised from 10.0°C to 29.0°C? A) 4.9 C) 5.2 D) 3.8 B) 6.5

The answer:

1) For the rate law:

Rate = $k [NO]^{x} [Br_2]^{y}$

 $[Br_2]$ was held constant at 0.50 mol/L in experiments (1) and (2) while [NO] changed from 0.35 mol/L to 0.10 mol/L.

 $\frac{\text{the initial rate of experiment (1)}}{\text{the initial rate of experiment (2)}} = \frac{735 \text{ mol/L.s.}}{60 \text{ mol/L.s.}} = 12.25 = \frac{k \text{ [NO]}^{\text{x}} \text{ [Br}_{2}\text{]}^{\text{y}}}{k \text{ [NO]}^{\text{x}} \text{ [Br}_{2}\text{]}^{\text{y}}}$

$$=\frac{k [0.35 \text{ mol/L}]^{x} [0.50 \text{ mol/L}]^{y}}{k [0.10 \text{ mol/L}]^{x} [0.50 \text{ mol/L}]^{y}} = (3.5)^{x}$$

12.25 = (3.5)^x = (3.5)²

The reaction is of second order in [NO].

In experiments (2) and (3), the [NO] was held constant at 0.10 mol/L while $[Br_2]$ changed from 0.50 mol/L to 0.20 mol/L.

$$\frac{\text{the initial rate of experiment (2)}}{\text{the initial rate of experiment (3)}} = \frac{60 \text{ mol/L.s.}}{24 \text{ mol/L.s.}} = 2.5 = \frac{\text{k} [\text{NO}]^{\text{x}} [\text{Br}_2]^{\text{y}}}{\text{k} [\text{NO}]^{\text{x}} [\text{Br}_2]^{\text{y}}}$$
$$= \frac{\text{k} [0.10 \text{ mol/L}]^{\text{x}} [0.50 \text{ mol/L}]^{\text{y}}}{\text{k} [0.10 \text{ mol/L}]^{\text{x}} [0.20 \text{ mol/L}]^{\text{y}}} = (2.5)^{\text{x}}$$

Where "y" is 1.0. Therefore, the reaction is of first order in $[Br_2]$, and the rate law is: Rate = k $[NO]^2 [Br_2]$

This reaction follows third order kinetics.

(1.0 mark)

2) The value of "k": From any of the three given experiments, say experiment number (1).

735 mol/L.s = k (0.35 mol/L)² (0.5 mol/L)
= k (0.1225 mol².L⁻²)(0.5 mol.L⁻¹)
= k (0.06125 mol³.L⁻³)
k =
$$\frac{735 \text{ mol.L}^{-1}.\text{s}^{-1}}{0.06125 \text{ mol}^3\text{L}^{-3}} = 12000 \text{ mol}^{-2}.\text{L}^2.\text{s}^{-1}$$
 (1.0 mark)

3) The initial rate = $12000 \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1} (0.30)^2 \text{ mol}^2 \text{ L}^{-2} (0.20 \text{ mol}/\text{L})$

$$= 12000 \times (0.3)^{2} (0.2) \text{ mol } L^{-1} \text{ s}^{-1}$$

= 216 mol.L⁻¹.s⁻¹ (1.0 mark)