1. A piece of 155.0 g aluminum metal at $120^{\circ} \mathrm{C}$ was placed in a constant pressure calorimeter of negligible heat capacity containing 300.0 g of water at $20^{\circ} \mathrm{C}$. Calculate the final temperature of the system (the aluminum metal and the water) in ${ }^{\circ} \mathrm{C}$; given the specific heat of aluminum metal $=$ $0.90 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$, and that of water $=4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$.

$$
\begin{array}{llll}
\text { A) } 24 & \text { B) } 26 & \text { C) } 28 & \text { D) } 30
\end{array}
$$

2. A 2.2 g sample of quinone $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$ was burned in a bomb calorimeter for which the total heat capacity is $7850 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. The temperature of the calorimeter increased from $23.44^{\circ} \mathrm{C}$ to $30.57^{\circ} \mathrm{C}$. What is the molar heat of combustion of quinone (in kJ/mole)?

$$
\begin{array}{llll}
\text { A) }-2750 & \text { B) }-2760 & \text { C) }-2785 & \text { D) }-2790
\end{array}
$$

3. Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}(/)$ is used as a rocket fuel. The thermochemical equation for the combustion of hydrazine is:

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~L})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~L}) \quad \Delta \mathrm{H}_{\text {comb. }}^{\circ}=662 \mathrm{~kJ}
$$

How many grams of hydrazine are required to obtain 20654 kJ of heat energy?
$\begin{array}{llll}\text { A) } 800 & \text { B) } 900 & \text { C) } 1000 & \text { D) } 1100\end{array}$
4. From the enthalpies of the following reactions:

$$
\begin{array}{cr}
2 \mathrm{HF}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=537 \mathrm{~kJ} \\
2 \mathrm{C}(\mathrm{gr})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) & \Delta \mathrm{H}=52 \mathrm{~kJ} \\
\mathrm{C}(\mathrm{gr})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CF}_{4}(\mathrm{~g}) & \Delta \mathrm{H}=-680 \mathrm{~kJ}
\end{array}
$$

Calculate (in kJ$) \Delta \mathrm{H}$ for the following reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+6 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CF}_{4}(\mathrm{~g})+4 \mathrm{HF}(\mathrm{~g})
$$

$$
\begin{array}{llll}
\text { A) }+2174 & \text { B) }-2174 & \text { C) }-2298 & \text { D) }-2486
\end{array}
$$

5. Given $\Delta \mathrm{H}^{\circ} \mathrm{NH}_{3}(\mathrm{~g})=-46 \mathrm{~kJ} / \mathrm{mol}$. Calculate (in kJ) the change in internal energy, $\Delta \mathrm{E}^{\circ}$, for the following reaction: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{NH}_{3}(\mathrm{~g})$

$$
\begin{array}{llll}
\text { A) }-51 & \text { B) }-41 & \text { C) }-87 & \text { D) }-97
\end{array}
$$

6. The solubility of nitrogen gas in water at $25^{\circ} \mathrm{C}$ and its partial pressure at 0.76 atm is $5.2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$. What is the partial pressure of nitrogen (in atm) at which its solubility in water is $1.71 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ at

$$
25^{\circ} \mathrm{C} \text { ? }
$$

$$
\begin{array}{llll}
\text { A) } 2.7 & \text { B) } 2.5 & \text { C) } 2.3 & \text { D) } 2.1
\end{array}
$$

7. Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, and toluene, $\mathrm{C}_{7} \mathrm{H}_{8}$, form ideal solution that has a total vapor pressure of 1.0 atm. What is the mole fraction of benzene in this solution, knowing that the vapor pressure of pure benzene is 1.326 atm and that of pure toluene is 0.532 atm? (all vapor pressures given are measured at exactly the same temperature).

$$
\begin{array}{llll}
\text { A) } 0.56 & \text { B) } 0.59 & \text { C) } 0.62 & \text { D) } 0.64
\end{array}
$$

8. A solution containing 10.0 g of CaCl_{2} (an electrolyte) in 100.0 g of water freezes at $-4.1^{\circ} \mathrm{C}$. What is the vant Hoff factor of this solution? (K_{f} water $=1.86^{\circ} \mathrm{C} / \mathrm{m}$).
A) $\mathbf{2 . 8 5}$
B) $\mathbf{2 . 6 8}$
C) 2.59
D) 2.45
9. A solution prepared from 100.0 g of nonvolatile non-electrolyte solute in 5.5 mole of toluene $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$ has a vapor pressure of 0.161 atm at $60^{\circ} \mathrm{C}$. What is the molecular weight (in $\mathrm{g} / \mathrm{mole}$) of the solute knowing that the vapor pressure of pure toluene at $60^{\circ} \mathrm{C}$ is 0.184 atm ?

$$
\begin{array}{llll}
\text { A) } 127.3 & \text { B) } 132.5 & \text { C) } 145.6 & \text { D) } 154.8
\end{array}
$$

10. The molar mass of hemoglobin (a nonelectrolyte) is $6.8 \times 10^{4} \mathrm{~g} / \mathrm{mole}$. What is the osmotic pressure (in mmHg) at $27^{\circ} \mathrm{C}$ of a solution of 8.0 g hemoglobin in 200 mL of water?
A) 9.0
B) 11.0
C) 13.0
D) 14.0

11. For the hypothetical reaction

$$
A+3 B \rightarrow 2 C
$$

the rate of appearance of C given by $\frac{\Delta[C]}{\Delta t}$ may be also expressed as:

$$
\begin{array}{llll}
\text { A) }+\frac{3 \Delta[B]}{2 \Delta t} & \text { B) }-\frac{3 \Delta[B]}{2 \Delta t} & \text { C) }-\frac{2 \Delta[B]}{3 \Delta t} & \text { D) }+\frac{2 \Delta[B]}{3 \Delta t}
\end{array}
$$

12. The data in the table below were obtained for the reaction:

$$
2 \mathrm{NO}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}
$$

Exp.	$[\mathrm{NO}]_{0}(\mathbf{M})$	$\left[\mathrm{H}_{2}\right]_{0}(\mathbf{M})$	Initial rate $(\mathbf{M} / \mathbf{s})$
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

the rate law for this reaction is: rate $=$
A) $\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$
B) $\mathrm{k}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]^{2}$
C) $\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]^{2}$
D) $\mathrm{k}[\mathrm{NO}]^{2}$
13. A compound decomposes by a first-order process. If $\mathbf{2 5 \%}$ of the compound decomposes in 61.0 minutes, what is the half life (in minutes) of this decomposition reaction?

$$
\begin{array}{llll}
\text { A) } 142 & \text { B) } 147 & \text { C) } 152 & \text { D) } 160
\end{array}
$$

14. The isomerization of cyclopropane to form propene follow a first-order kinetics. At $700 \mathrm{~K}, 10 \%$ of a sample of cyclopropane is isomerized to propene in $\mathbf{1 7 0}$ minutes. How many minutes are required for 35% of a sample of cyclopropane to change to propene at 700 K ?

$$
\begin{array}{llll}
\text { A) } 695 & \text { B) } 675 & \text { C) } 625 & \text { D) } 595
\end{array}
$$

412

$$
\stackrel{\text { Thankyou! }}{\stackrel{\Delta}{\square}}
$$

$$
\stackrel{A}{\square}
$$

