The sign of ΔH for the process CO₂(s) = CO₂(g) is: ((the symbol "H" means enthalpy))

A) Positive and $H_{CO2}(s) > H_{CO2}(g)$ B) Positive and $H_{CO2}(g) > H_{CO2}(s)$ C) Negative and $H_{CO2}(s) > H_{CO2}(g)$ D) Negative and $H_{CO2}(g) > H_{CO2}(s)$

2. Which of the ΔH°_{rxn} of the following equations represents $\Delta H^{\circ}_{f, K3PO4(s)}$?

A) $3K(s) + PO_2(s) + O_2(g) \rightarrow K_3PO_4(s)$ B) $K_3(s) + P(s) + O_4(g) \rightarrow K_3PO_4(s)$ C) $K_3P(s) + 2O_2(g) \rightarrow K_3PO_4(s)$ D) $3K(s) + P(s) + 2O_2(g) \rightarrow K_3PO_4(s)$

3. A balanced chemical equation with specified value of ΔH and states of substances is called:

A) A thermochemical equation

- **B)** A combusion reaction
- C) The first law of thermodynamics
- D) Hess's law

4. Change in internal energy (ΔE°), in kJ, of the following reaction is: 2NaHCO₃(s) → Na₂CO₃(s) + H₂O(g) + CO₂(g) ΔH°_{rxn} = 129 kJ

- A) 121.04
- B) 134.04
- C) 124.04
- D) 114.04

5. If 10.0 g of a metal (C_s = 0.896 J/g K) at 298 K is supplied with 313.5 J of heat, its final temperature, in K, will be:

A) 353
B) 333
C) 323
D) 373

$$q = C_s \times m \times \Delta T$$

6. From table below, ΔH°_{rxn} of the following reaction, in KJ, is: PCl₃(g) + 3HCl(g) \rightarrow 3Cl₂(g) + PH₃(g)

Compound	PH ₃ (g)	PCl ₃ (g)	HCl(g)
$\Delta H_f/KJ \text{ mol}^{-1}$	+ 5.40	- 288.07	- 92.30

A) 570.37 B) 507.37 C) 705.37 D) 750.37

$$\Delta H = H_{\text{final}} - H_{\text{initial}}$$
$$= H_{\text{products}} - H_{\text{reactants}}$$

7. Knowing that: $1/2H_2(g) + 1/2Cl_2(g) \longrightarrow HCl(g) \qquad \Delta H^{\circ}_{rxn} = -92.3 \text{ KJ}$ the number of kilojoules (KJ) released if 100 g of HCl(g) is produced, is:

A) 235.17
B) 325.17
C) 523.17
D) 253.17

8. The process of surrounding solute particles by solvent particles is known as:

A) DilutionB) FormationC) Solvation

D) Osmosis

9. The solubility of?....in liquid is highly affected by changing pressure

A) GasesB) LiquidsC) SolidsD) Salts

10. If 0.1 mol of solid glucose $(C_6H_{12}O_6)$ is dissolved in the same mass of each of the following solvents:

Solvent	Q	X	Y	Z
K _b /C molal ⁻¹	0.4	1.53	1.7	0.5

the solvent which its boiling point is elevated more is:

A) Q B) X C) Y D) Z

$$\Delta T_b = K_b m$$

11. The magnitudes of the molal constant of boiling point elevation (K_b) depend on:

A) Temperature
B) Pressure
C) Nature of solute
D) Nature of solvent

12. The aqueous solution with the highest boiling point is:

A) 0.1 M HI B) 0.1 M $(NH_4)_3PO_4$ C) 0.2 M C_2H_5OH D) 0.1 M NH_4CI 13. If 1 L carbonated water is bottled under pressure of 2.4 atm of CO₂(g), and Henry's law constant is 3.36 x 10⁻² mol/L atm, the number of grams of dissolved CO₂(g) is:

A) 5.35
B) 53.5
C) 35.5
D) 3.55

14. At 30 °C, the osmotic pressure, in torr, of 0.108 M aqueous solution of a salt that is assumed to be totally ionized into three ions is:

A) 3.16 x 10³
B) 1.63 x 10³
C) 6.13 x 10³
D) 1.36 x 10³

15. The minimum amount of energy required to overcome the energy barrier in a chemical reaction is the:

A) Activation energy

- B) Reaction's enthalpy
- C) Reactant's kinetic energy
 - D) Reactants' heat content

16. Increasing temperature increases reaction rate because it:

A) Increases the activation energy
B) Decreases the activation energy
C) Increases the number of collisions
D) Increases the reaction enthalpy

17. According to the following reaction: N₂O₅(g) → NO₂(g) + NO₃(g) if 0.8 mol of N₂O₅ (g) is initially put in 2L-reaction vessel and is found to be 0.0125 mol after 2 min, the rate of disappearance of N₂O₅ (g), in M/min, is:

A) 0.9169
B) 0.1969
C) 0.6919
D) 0.9961

18. From the following reaction potential energy (PE) diagram:

Reaction Pathway

which of the following is correct for the forward reaction:

	ΔH/kJ	Activation energy, Ea/kJ	Type of reaction
A)	+ 20	10	exothermic
B)	+ 20	30	endothermic
C)	- 20	10	exothermic
D)	- 20	40	endothermic

19. In a first order reaction, if the concentration of the reactant changes from 0.1 M to 0.025 M in 40 minutes, the reaction rate, in M/min, when the initial concentration is 0.01 M is:

A) 6.634 x 10⁻⁴
B) 6.346 x 10⁻⁴
C) 4.366 x 10⁻⁴
D) 3.466 x 10⁻⁴

20. For the reaction: $N_2O_5(g) \longrightarrow 2NO_2(g) + 1/2O_2(g)$ if the value of the rate of disappearance of N_2O_5 is 6.25 x 10⁻³ mol L⁻¹ s⁻¹, the rate of appearance of NO₂ is:

A) 2.15 x 10⁻²
B) 1.25 x 10⁻²
C) 2.51 x 10⁻²
D) 2.51 x 10⁻²

