1. The sign of $\Delta \mathrm{H}$ for the process $\mathrm{CO}_{2}(\mathrm{~s})=$ $\mathrm{CO}_{2}(\mathrm{~g})$ is: ((the symbol " H " means enthalpy))

A) Positive and $\mathrm{H}_{\mathrm{CO} 2}(\mathrm{~s})>\mathrm{H}_{\mathrm{CO}}(\mathrm{g})$
B) Positive and $\mathrm{H}_{\mathrm{CO} 2}(\mathrm{~g})>\mathrm{H}_{\mathrm{CO}_{2}}(\mathrm{~s})$
C) Negative and $\mathrm{H}_{\mathrm{CO} 2}(\mathrm{~s})>\mathrm{H}_{\mathrm{CO} 2}(\mathrm{~g})$
D) Negative and $\mathrm{H}_{\mathrm{CO} 2}(\mathrm{~g})>\mathrm{H}_{\mathrm{CO} 2}(\mathrm{~s})$

2. Which of the $\Delta \mathrm{H}^{0}{ }_{\mathrm{rxn}}$ of the following equations represents $\Delta \mathrm{H}_{\mathrm{f}, \mathrm{K} 3 \mathrm{PO} 4(\mathrm{~s})}$?

A) $3 \mathrm{~K}(\mathrm{~s})+\mathrm{PO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{~s})$
B) $\mathrm{K}_{3}(\mathrm{~s})+\mathrm{P}(\mathrm{s})+\mathrm{O}_{4}(\mathrm{~g}) \rightarrow \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{~s})$
C) $\mathrm{K}_{3} \mathrm{P}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{~s})$
D) $3 \mathrm{~K}(\mathrm{~s})+\mathrm{P}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{~s})$
3. A balanced chemical equation with specified value of ΔH and states of substances is called:
A) A thermochemical equation
B) A combusion reaction
C) The first law of thermodynamics
D) Hess's law
4. Change in internal energy $\left(\Delta E^{\circ}\right)$, in kJ , of the following reaction is:
$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$ $\Delta H^{\circ}{ }_{\mathrm{rxn}}=129 \mathrm{~kJ}$
A) 121.04
B) 134.04
C) 124.04
D) $\mathbf{1 1 4 . 0 4}$
5. If 10.0 g of a metal ($\mathrm{C}_{\mathrm{s}}=0.896 \mathrm{~J} / \mathrm{g} \mathrm{K}$) at 298 K is supplied with 313.5 J of heat, its final temperature, in K, will be:
A) 353
B) 333

$$
q=C_{s} \times m \times \Delta T
$$

C) 323
D) 373

6. From table below, $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ of the following

 reaction, in KJ, is:$\mathrm{PCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{g}) \rightarrow 3 \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{PH}_{3}(\mathrm{~g})$

Compound	$\mathrm{PH}_{3}(\mathrm{~g})$	$\mathrm{PCl}_{3}(\mathrm{~g})$	$\mathrm{HCl}(\mathrm{g})$
$\Delta \mathrm{H}_{\mathrm{f}} / \mathrm{KJ} \mathrm{mol}^{-1}$	+5.40	-288.07	-92.30

$\begin{array}{llll}\text { A) } \mathbf{5 7 0 . 3 7} & \text { B) } \mathbf{5 0 7 . 3 7} & \text { C) } \mathbf{7 0 5 . 3 7} & \text { D) } \mathbf{7 5 0 . 3 7}\end{array}$

$$
\begin{aligned}
\Delta H & =H_{\mathrm{final}}-H_{\mathrm{initial}} \\
& =H_{\mathrm{products}}-H_{\mathrm{reactants}}
\end{aligned}
$$

7. Knowing that:

$1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}{ }^{2}=-92.3 \mathrm{KJ}$ the number of kilojoules (KJ) released if 100 g of $\mathrm{HCl}(\mathrm{g})$ is produced, is:
A) 235.17
B) 325.17
C) 523.17
D) 253.17
8. The process of surrounding solute particles by solvent particles is known as:
A) Dilution
B) Formation
C) Solvation
D) Osmosis

9. The solubility of?.....in liquid is highly affected by changing pressure

A) Gases
B) Liquids
C) Solids
D) Salts
10. If 0.1 mol of solid glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is dissolved in the same mass of each of the following solvents:

Solvent	Q	X	Y	Z
$\mathrm{K}_{\mathrm{b}} /$ C molal $^{-1}$	0.4	1.53	1.7	0.5

the solvent which its boiling point is elevated more is:
A) Q
B) X
C) Y
D) Z

$$
\Delta T_{b}=K_{b} m
$$

11. The magnitudes of the molal constant of boiling point elevation (K_{b}) depend on:
A) Temperature B) Pressure
C) Nature of solute
D) Nature of solvent

12. The aqueous solution with the highest boiling point is:

A) 0.1 M HI
B) $0.1 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ C) $0.2 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
D) $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$

13. If 1 L carbonated water is bottled under pressure of 2.4 atm of $\mathrm{CO}_{2}(\mathrm{~g})$, and Henry's law constant is $3.36 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ atm, the number of grams of dissolved $\mathrm{CO}_{2}(\mathrm{~g})$ is:
A) 5.35
B) 53.5
C) 35.5
D) 3.55
14. At $30^{\circ} \mathrm{C}$, the osmotic pressure, in torr, of 0.108 M aqueous solution of a salt that is assumed to be totally ionized into three ions is:
A) 3.16×10^{3}
B) 1.63×10^{3}
C) 6.13×10^{3}
D) $1.36 \times 10^{\mathbf{3}}$
15. The minimum amount of energy required to overcome the energy barrier in a chemical reaction is the:

A) Activation energy

B) Reaction's enthalpy
C) Reactant's kinetic energy
D) Reactants' heat content
16. Increasing temperature increases reaction rate because it:
A) Increases the activation energy
B) Decreases the activation energy
C) Increases the number of collisions
D) Increases the reaction enthalpy
17. According to the following reaction:

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g})
$$

if 0.8 mol of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ is initially put in 2 L -reaction vessel and is found to be 0.0125 mol after 2 min , the rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$, in $\mathrm{M} / \mathrm{min}$, is:
A) 0.9169
B) 0.1969
C) 0.6919
D) 0.9961

18. From the following reaction potential energy (PE) diagram:

Reaction Pathway
which of the following is correct for the forward reaction:

	$\Delta H / k J$	Activation energy, Ea/kJ	Type of reaction
A)	+20	10	exothermic
B)	+20	30	endothermic
C)	-20	10	exothermic
D)	-20	40	endothermic

19. In a first order reaction, if the concentration of the reactant changes from 0.1 M to 0.025 M in 40 minutes, the reaction rate, in $\mathrm{M} / \mathrm{min}$, when the initial concentration is 0.01 M is:
A) 6.634×10^{-4}
B) 6.346×10^{-4}
C) 4.366×10^{-4}
D) 3.466×10^{-4}

20. For the reaction:
 $$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

if the value of the rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, the rate of appearance of NO_{2} is:
A) 2.15×10^{-2}
B) 1.25×10^{-2}
C) 2.51×10^{-2}
D) 2.51×10^{-2}

412

$$
\stackrel{\text { Thankyou! }}{\stackrel{\Delta}{\square}}
$$

$$
\stackrel{A}{\square}
$$

