

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; Bruce E. Bursten; Catherine J. Murphy

Chapter 3 Stoichiometry

Calculations with Chemical Formulas and Equations

Ahmad Aqel Ifseisi

Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia Building: 05, Office: 1A7 & AA53 Tel. 014674198, Fax: 014675992 Web site: http://fac.ksu.edu.sa/aifseisi E-mail: ahmad3qel@yahoo.com aifseisi@ksu.edu.sa

- Our focus will be on the use of chemical formulas to represent reactions and on the quantitative information we can obtain about the amounts of substances involved in reactions.
- Stoichiometry is the area of study that examines the quantities of substances consumed and produced in chemical reactions.
- The name derived from the Greek stoicheion "element" and *metron* "measure".

Law of Conservation of Mass

"We may lay it down as an incontestable axiom that, in all the operations of art and nature, nothing is created; an equal amount of matter exists both before and after the experiment. Upon this principle, the whole art of performing chemical experiments depends."

-- Antoine Lavoisier, 1789.

Atoms are neither created nor destroyed during any chemical reaction. The changes that occur during any reaction merely rearrange the atoms. The same collection of atoms is present both before and after the reaction. -- Dalton's atomic theory.

3.1 Chemical Equations

Chemical Equations

Chemical equations are concise representations of chemical reactions.

When hydrogen gas H_2 burns, it reacts with oxygen O_2 in the air to form water H_2O .

The numbers in front of the formulas are coefficients (indicate the relative numbers of molecules of each kind involved in the reaction).

Molecular models

Balanced equation, a chemical equation have an equal number of atoms of each element on each side, because atoms are neither created nor destroyed in any reaction.

Subscripts and Coefficients give different information

When balancing an equation, you should never change subscripts. In contrast, placing a suitable coefficient in front of a formula.

Subscripts tell the number of atoms of each element in a molecule. Coefficients tell the number of molecules.

How many atoms of Mg, O, and H are represented by 3 Mg(OH)₂? 3 atoms Mg, 6 atoms O, 6 atoms H

Anatomy of a Chemical Equation

 $CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(g)}$

$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(g)}$

Reactants appear on the left side of the equation.

Products appear on the right side of the equation.

The **states** of the reactants and products are written in parentheses to the right of each compound; (*g*) gas, (*I*) liquid, (*s*) solid, (*aq*) aqueous solution.

Subscripts present within a formula and tell the number of atoms of each element in a molecule.

Coefficients are inserted in front of a formula to balance the equation.

Sometimes the conditions (such as temperature or pressure) under which the reaction proceeds appear above or below the reaction arrow. Δ refer to temperature.

Practice Exercise

In the following diagram, the white spheres represent hydrogen atoms, and the blue spheres represent nitrogen atoms. To be consistent with the law of conservation of mass, how many NH_3 molecules should be shown in the right box?

Answer: Six NH₃ molecules.

SAMPLE EXERCISE 3.2 Balancing Chemical Equations

Balance this equation:

 $Na(s) + H_2O(l) \longrightarrow NaOH(aq) + H_2(g)$

SOLUTION $2 \operatorname{Na}(s) + 2 \operatorname{H}_2O(l) \longrightarrow 2 \operatorname{NaOH}(aq) + \operatorname{H}_2(g)$

Practice Exercise

Balance the following equations by providing the missing coefficients: (a) $Fe(s) + O_2(g) \rightarrow Fe_2O_3(s)$ (b) $C_2H_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(g)$ (c) $Al(s) + HCl(aq) \rightarrow AlCl_3(aq) + H_2(g)$

Answers: (a) 4, 3, 2; (b) 1, 3, 2, 2; (c) 2, 6, 2, 3

3.2 Some Simple Patterns of Chemical Reactivity

Reaction Types

(some simple patterns of chemical reactivity)

- Combination Reactions
- Decomposition Reactions
- Combustion Reactions
- Substitution reactions
- Addition reactions
- Elimination reactions
- Oxidation-reduction reactions etc.

Combination Reactions

In this type of reaction two or more substances react to form one product.
A combination reaction between a metal and a nonmetal produce ionic solid.

 $A + B \longrightarrow C$

• Examples:

Decomposition Reactions

- In this type one substance breaks down into two or more substances.

- Many compounds undergo decomposition reactions when heated.

 \rightarrow B + C

- Examples:
 - $\begin{array}{cccccccc} & \mathsf{CaCO}_{3\ (s)} & \longrightarrow & \mathsf{CaO}_{\ (s)} + & \mathsf{CO}_{2\ (g)} \\ & 2 & \mathsf{KCIO}_{3\ (s)} & \longrightarrow & 2 & \mathsf{KCI}_{\ (s)} + & 3 & \mathsf{O}_{2\ (g)} \end{array}$
 - $-\operatorname{Cu(OH)}_{2 (s)} \longrightarrow \operatorname{CuO}_{(s)} + \operatorname{H}_{2}\operatorname{O}_{(l)}$
 - $PbCO_{3 (s)} \longrightarrow PbO_{(s)} + CO_{2 (g)}$
 - $-2 \operatorname{NaN}_{3(s)} \longrightarrow 2 \operatorname{Na}_{(s)} + 3 \operatorname{N}_{2(g)}$

Combustion Reactions

These are generally rapid reactions that produce a flame.
Most often involve hydrocarbons reacting

with oxygen in the air.

- Hydrocarbon compounds contain only Carbons (**C**) and Hydrogen (**H**).

• Examples: $-CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(g)}$ $-C_3H_{8(g)} + 5O_{2(g)} \longrightarrow 3CO_{2(g)} + 4H_2O_{(g)}$ When Na and S undergo a combination reaction, what is the chemical formula of the product?

 Na_2S

SELECTED POLYATOMIC IONS						
Hg_2^{2+}	dimercury (I)	CrO_4^{2-}	chromate			
$C_2H_3O_2^-$ CH_3COO^-	acetate	$\frac{\text{Cr}_2\text{O}_7}{\text{MnO}_4^-}$	permanganate manganate			
CN^{-} CO_{2}^{2-}	cyanide carbonate	NO ₂	nitrite nitrate			
HCO3-	hydrogen	OH ⁻ PO ³⁻	hydroxide			
$C_2 O_4^{2-}$	oxalate	SCN ⁻	thiocyanate			
ClO_2^-	chlorite	SO_3^- SO_4^{2-}	sulfite			
ClO_3^- ClO_4^-	chlorate perchlorate	HSO_4^- $S_2O_3^{2-}$	hydrogen sulfate thiosulfate			

Examples:

 $\begin{array}{lll} \mathsf{Na}_2\mathsf{SO}_4 & \mathsf{Ca}\mathsf{SO}_4 \\ \mathsf{Na}_3\mathsf{PO}_4 & \mathsf{Ca}_3(\mathsf{PO}_4)_2 \\ \mathsf{Na}\mathsf{NO}_3 & \mathsf{Ca}(\mathsf{NO}_3)_2 \\ \mathsf{Na}\mathsf{O}\mathsf{H} & \mathsf{Ca}(\mathsf{O}\mathsf{H})_2 \end{array}$

Sample Exercise 3.3 Writing Balanced Equations for Combination and Decomposition Reactions

Write balanced equations for the following reactions: (a) The combination reaction that occurs when lithium metal and fluorine gas react. (b) The decomposition reaction that occurs when solid barium carbonate is heated. (Two products form: a solid and a gas.)

$$2 \operatorname{Li}(s) + \operatorname{F}_2(g) \longrightarrow 2 \operatorname{LiF}(s)$$

 $BaCO_3(s) \longrightarrow BaO(s) + CO_2(g)$

Practice Exercise

Write balanced chemical equations for the following reactions: (a) Solid mercury(II) sulfide decomposes into its component elements when heated. (b) The surface of aluminum metal undergoes a combination reaction with oxygen in the air.

Answer: (a) $\operatorname{HgS}(s) \rightarrow \operatorname{Hg}(l) + \operatorname{S}(s)$ (b) $4 \operatorname{Al}(s) + 3 \operatorname{O}_2(g) \rightarrow 2 \operatorname{Al}_2\operatorname{O}_3(s)$ Sample Exercise 3.4 Writing Equations for Combustion Reactions

Write the balanced equation for the reaction that occurs when methanol, $CH_3OH(I)$, is burned in air.

 $CH_3OH(l) + O_2(g) \longrightarrow CO_2(g) + H_2O(g)$

 $2 \operatorname{CH}_3\operatorname{OH}(l) + 3 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{CO}_2(g) + 4 \operatorname{H}_2\operatorname{O}(g)$

Practice Exercise

Write the balanced equation for the reaction that occurs when ethanol, $C_2H_5OH(l)$, is burned in air.

Answer: $C_2H_5OH(l) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(g)$

3.3 Formula Weights

Formula Weights (FW)

A formula weight is the sum of the atomic weights for the atoms in a chemical formula.

Formula weights are generally reported for ionic compounds.

For example, the formula weight of calcium chloride, CaCl₂, would be Ca: 1(40.1 amu) <u>+ Cl: 2(35.5 amu)</u> 111.1 amu

FW of NaCl = 23.0 amu + 35.5 amu = 58.5 amu

$$FW \text{ of } H_2SO_4 = 2(AW \text{ of } H) + (AW \text{ of } S) + 4(AW \text{ of } O)$$
$$= 2(1.0 \text{ amu}) + 32.1 \text{ amu} + 4(16.0 \text{ amu})$$
$$= 98.1 \text{ amu}$$

If the chemical formula is merely the chemical symbol of an element, such as Na, then the formula weight equals the atomic weight of the element.

Molecular Weight (MW)

A molecular weight is the sum of the atomic weights of the atoms in a molecule. For example, the molecular weight of the ethane molecule, C_2H_6 , the would be

> C: 2(12.0 amu) + H: 6(1.0 amu) 30.0 amu

MW of $C_6H_{12}O_6 = 6(12.0 \text{ amu}) + 12(1.0 \text{ amu}) + 6(16.0 \text{ amu}) = 180.0 \text{ amu}$

If the chemical formula is that of a molecule, then the formula weight is also called the molecular weight.

*The abbreviation AW is used for atomic weight, FW for formula weight, and MW for molecular weight.

Sample Exercise 3.5 Calculating formula Weights

Calculate the formula weight of (a) sucrose, $C_{12}H_{22}O_{11}$ (table sugar), and (b) calcium nitrate, $Ca(NO_3)_2$.

Solution

(a) By adding the atomic weights of the atoms in sucrose, we find the formula weight to be 342.0 amu:

(b) If a chemical formula has parentheses, the subscript outside the parentheses is a multiplier for all atoms inside. Thus, for $Ca(NO_3)_2$, we have

12 C atoms = 12(12.0 amu) = 144.0 amu22 H atoms = 22(1.0 amu) = 22.0 amu $11 \text{ O atoms} = 11(16.0 \text{ amu}) = \frac{176.0 \text{ amu}}{342.0 \text{ amu}}$

		164.1 amu
6 O atoms =	6(16.0 amu) =	96.0 amu
2 N atoms =	2(14.0 amu) =	28.0 amu
1 Ca atom =	1(40.1 amu) =	40.1 amu

Practice Exercise

Calculate the formula weight of (a) $Al(OH)_3$ and (b) CH_3OH . *Answer:* (a) 78.0 amu, (b) 32.0 amu

Percent Composition

One can find the percentage composition of the mass of a compound that comes from each of the elements in the compound by using this equation:

% element =
$$\frac{\begin{pmatrix} \text{number of atoms} \\ \text{of that element} \end{pmatrix} \begin{pmatrix} \text{atomic weight} \\ \text{of element} \end{pmatrix}}{\text{formula weight of compound}} \times 100\%$$

So the percentage of carbon (C) in ethane C_2H_6 is...

$$%C = \frac{(2)(12.0 \text{ amu})}{(30.0 \text{ amu})}$$
$$= \frac{24.0 \text{ amu}}{30.0 \text{ amu}} \times 100$$
$$= 80.0\%$$

Sample Exercise 3.6 Calculating Percentage Composition

Calculate the percentage of carbon, hydrogen, and oxygen (by mass) in $C_{12}H_{22}O_{11}.$

Solution

The formula weight of $C_{12}H_{22}O_{11}$, 342.0 amu

$$%C = \frac{(12)(12.0 \text{ amu})}{342.0 \text{ amu}} \times 100\% = 42.1\%$$
$$%H = \frac{(22)(1.0 \text{ amu})}{342.0 \text{ amu}} \times 100\% = 6.4\%$$
$$\%O = \frac{(11)(16.0 \text{ amu})}{342.0 \text{ amu}} \times 100\% = 51.5\%$$

3.4 Avogadro's Number and the Mole

Avogadro's Number and the Mole

Even the smallest samples that we deal with in the laboratory contain enormous numbers of atoms, ions, or molecules. For example, a teaspoon of water (about 5 mL) contains 2×10^{23} water molecules.

A mole is the amount of matter that contains as many objects (atoms, molecules, or whatever objects we are considering) as the number of atoms in exactly 12 g of isotopically pure ¹²C.

From experiments, scientists have determined this number to be $6.0221421x10^{23}$. Scientists call this number Avogadro's number, and has the symbol N_A, and round to $6.02x10^{23}$ mol⁻¹.

A mole of atoms, a mole of molecules, or a mole of anything else all contain Avogadro's number of these objects:

> $1 \text{ mol} {}^{12}\text{C} \text{ atoms} = 6.02 \times 10^{23} {}^{12}\text{C} \text{ atoms}$ $1 \text{ mol} H_2\text{O} \text{ molecules} = 6.02 \times 10^{23} H_2\text{O} \text{ molecules}$ $1 \text{ mol} \text{ NO}_3^- \text{ ions} = 6.02 \times 10^{23} \text{ NO}_3^- \text{ ions}$

Sample Exercise 3.7 Estimating Numbers in Atoms

Without using a calculator, arrange the following samples in order of increasing numbers of carbon atoms:

12 g 12 C, 1 mol C₂H₂, 9 × 10²³ molecules of CO₂.

Solution

To determine the number of C atoms in each sample, we must convert g 12 C, 1 mol C₂H₂, and 9 × 10²³ molecules CO₂ all to numbers of C atoms. A mole is defined as the amount of matter that contains as many units of the matter as there are C atoms in exactly 12 g of 12 C. Thus,

-12 g of ¹²C contains 1 mol of C atoms (that is, 6.02×10^{23} C atoms). -One mol of C₂H₂ contains 6×10^{23} C₂H₂ molecules. Because there are two C atoms in each C₂H₂ molecule, this sample contains 12×10^{23} C atoms. -Because each CO₂ molecule contains one C atom, the sample of CO₂ contains 9×10^{23} C atoms.

Hence, the order is 12 g 12 C (6 × 10²³ C atoms) < 9 × 10²³ CO₂ molecules (9 × 10²³ C atoms) < 1 mol C₂H₂ (12 × 10²³ C atoms).

Practice Exercise

Without using a calculator, arrange the following samples in order of increasing number of O atoms: 1 mol H₂O, 1 mol CO₂, 3×10^{23} molecules O₃. *Answer:* 1 mol H₂O (6×10^{23} O atoms) 3×10^{23} molecules O₃ (9×10^{23} O atoms) 1 mol CO₂ (12 × 10²³ O atoms)

Sample Exercise 3.8 Converting Moles to Atoms

Calculate the number of H atoms in 0.350 mol of $C_6H_{12}O_6$.

Solution

Avogadro's number provides the conversion factor between the number of moles of $C_6H_{12}O_6$ and the number of molecules of $C_6H_{12}O_6$.

Moles $C_6H_{12}O_6 \rightarrow$ molecules $C_6H_{12}O_6 \rightarrow$ atoms H

Practice Exercise

How many oxygen atoms are in (a) 0.25 mol Ca(NO₃)₂ and (b) 1.50 mol of sodium carbonate? Answer: (a) 9.0×10^{23} , (b) 2.71×10^{24}

Molar Mass

A molar mass is the mass of 1 mol of a substance (i.e., g/mol).

- The molar mass of an element is the mass number for the element that we find on the periodic table.
- The formula weight (in amu's) will be the same number as the molar mass (in g/mol).

Avogadro's No (N_A) = (6.022 x 10^{23}) No. of atoms or molecules or ions or particles No. of atoms or molecules or ions or particles

No. of moles = MW (g/mol)

Using Moles

Moles provide a bridge between mass and the number of particles (from the molecular scale to the real-world scale).

Sample Exercise Calculate the number of copper atoms in an old copper penny, Such a penny weighs about 3g, and we will assume that it is 100% copper:

Cu atoms =
$$(3 \text{ gCu}) \left(\frac{1 \text{ mol Cu}}{63.5 \text{ gCu}} \right) \left(\frac{6.02 \times 10^{23} \text{ Cu atoms}}{1 \text{ mol Cu}} \right)$$

= $3 \times 10^{22} \text{ Cu atoms}$

Sample Exercise 3.9 Calculating Molar Mass

What is the mass in grams of 1.000 mol of glucose, $C_6H_{12}O_6$? Solution

The molar mass of a substance is found by adding the atomic weights of its component atoms.

6 C atoms	=	6(12.0 amu)	=	72.0 amu
12 H atoms	=	12(1.0 amu)	=	12.0 amu
6 O atoms	=	6(16.0 amu)	=	96.0 amu
				180.0 amu

Because glucose has a formula weight of 180.0 amu, one mole of this substance has a mass of 180.0 g. In other words, $C_6H_{12}O_6$ has a molar mass of 180.0 g/mol.

Practice Exercise

Calculate the molar mass of $Ca(NO_3)_2$. Answer: 164.1 g/mol

Sample Exercise 3.10 Converting Grams to Moles

Calculate the number of moles of glucose ($C_6H_{12}O_6$) in 5.380 g of $C_6H_{12}O_6$.

Solution

The molar mass of a substance provides the factor for converting grams to moles. The molar mass of $C_6H_{12}O_6$ is 180.0 g/mol.

Using 1 mol $C_6H_{12}O_6=180.0$ g $C_6H_{12}O_6$ to write the appropriate conversion factor, we have

Moles
$$C_6H_{12}O_6 = (5.380 \text{ g} \cdot C_6H_{12}O_6) \left(\frac{1 \text{ mol } C_6H_{12}O_6}{180.0 \text{ g} \cdot C_6H_{12}O_6}\right) = 0.02989 \text{ mol } C_6H_{12}O_6$$

Practice Exercise

How many moles of sodium bicarbonate (NaHCO₃) are in 508 g of NaHCO₃? *Answer:* 6.05 mol NaHCO₃

Sample Exercise 3.11 Converting Moles to Grams

Calculate the mass, in grams, of 0.433 mol of calcium nitrate.

Solution

Because the calcium ion is Ca^{2+} and the nitrate ion is NO_3^- , calcium nitrate is $Ca(NO_3)_2$. Adding the atomic weights of the elements in the compound gives a formula weight of 164.1 amu. Using 1 mol $Ca(NO_3)_2 = 164.1$ g $Ca(NO_3)_2$ to write the appropriate conversion factor, we have

Grams Ca(NO₃)₂ = (0.433 mol Ca(NO₃)₂)
$$\left(\frac{164.1 \text{ g Ca}(NO_3)_2}{1 \text{ mol Ca}(NO_3)_2}\right) = 71.1 \text{ g Ca}(NO_3)_2$$

Practice Exercise

What is the mass, in grams, of (a) 6.33 mol of NaHCO₃ and (b) 3.0×10^{-5} mol of sulfuric acid? *Answer:* (a) 532 g, (b) 2.9×10^{-3} g

Sample Exercise 3.12 Calculating the Number of Molecules and Number of Atoms from Mass

(a) How many glucose molecules are in 5.23 g of $C_6H_{12}O_6$? (b) How many oxygen atoms are in this sample?

Solution

(a) 1 mol $C_6H_{12}O_6 = 180.0$ g $C_6H_{12}O_6$. The second conversion uses Avogadro's number. Molecules $C_6H_{12}O_6$

$$= (5.23 \text{ g } \text{C}_6\text{H}_{12}\text{O}_6) \left(\frac{1 \text{ mol } \text{C}_6\text{H}_{12}\text{O}_6}{180.0 \text{ g } \text{C}_6\text{H}_{12}\text{O}_6} \right) \left(\frac{6.02 \times 10^{23} \text{ molecules } \text{C}_6\text{H}_{12}\text{O}_6}{1 \text{ mol } \text{C}_6\text{H}_{12}\text{O}_6} \right)$$
$$= 1.75 \times 10^{22} \text{ molecules } \text{C}_6\text{H}_{12}\text{O}_6$$

(b) To determine the number of O atoms, we use the fact that there are six O atoms in each molecule of $C_6H_{12}O_6$. Thus, multiplying the number of molecules $C_6H_{12}O_6$ by the factor (6 atoms O/1 molecule $C_6H_{12}O_6$) gives the number of O atoms.

Atoms O =
$$(1.75 \times 10^{22} \text{ molecules } C_6H_{12}O_6) \left(\frac{6 \text{ atoms O}}{1 \text{ molecule } C_6H_{12}O_6}\right)$$

= $1.05 \times 10^{23} \text{ atoms O}$
3.5 Empirical Formulas from Analyses

Empirical Formulas from Analyses

Molecular formula: chemical formula that indicate the actual numbers and types of atoms in a molecule.

Empirical formula: chemical formula that give only the relative number of atoms of each type in a molecule.

The subscripts in an empirical formula are always the smallest possible wholenumber ratios.

For example;

- The molecular formula of hydrogen peroxide is H_2O_2 , where as its empirical formula is HO.
- The molecular formula of ethylene is C_2H_4 , where as its empirical formula is CH_2 .
- For water, H_2O the molecular and the empirical formulas are identical.

The structural formula for the substance ethane is shown here:

(a) What is the molecular formula for ethane? (b) What is its empirical formula?

Sample Exercise 3.13 Calculating Empirical Formula

Ascorbic acid (vitamin C) contains 40.92% C, 4.58% H, and 54.50% O by mass. What is the empirical formula of ascorbic acid?

Solution

We *first* assume that we have exactly 100 g of material. In 100 g of ascorbic acid, therefore, we have:

$$40.92 \text{ g C}, 4.58 \text{ g H}, \text{ and } 54.50 \text{ g O}.$$

$$Moles C = (40.92 \text{ g C}) \left(\frac{1 \text{ mol C}}{12.01 \text{ g C}}\right) = 3.407 \text{ mol C}$$

$$Moles H = (4.58 \text{ g H}) \left(\frac{1 \text{ mol H}}{1.008 \text{ g H}}\right) = 4.54 \text{ mol H}$$

$$Moles O = (54.50 \text{ g O}) \left(\frac{1 \text{ mol O}}{16.00 \text{ g O}}\right) = 3.406 \text{ mol O}$$

$$C: \frac{3.407}{3.406} = 1.000 \quad \text{H}: \frac{4.54}{3.406} = 1.33 \quad \text{O}: \frac{3.406}{3.406} = 1.000$$

C:H:O = 3(1:1.33:1) = 3:4:3

The whole-number mole ratio gives us the subscripts for the empirical formula: $C_3H_4O_3$

Practice Exercise

A 5.325 g sample of methyl benzoate, a compound used in the manufacture of perfumes, contains 3.758 g of carbon, 0.316 g of hydrogen, and 1.251 g of oxygen. What is the empirical formula of this substance?

Answer: C₄H₄O

Practice Exercise

The compound of *para*-aminobenzoic acid (you may have seen it listed as PABA on your bottle of sunscreen as a UV filter) is composed of carbon (61.31%), hydrogen (5.14%), nitrogen (10.21%), and oxygen (23.33%). Find the empirical formula of PABA.

Answer: C₇H₇NO₂

Molecular formula from empirical formula

From percentage compositions we can obtain the empirical formula. We can obtain the molecular formula from the empirical formula if we are given the molecular weight.

This whole number multiple is the ratio between the molecular and empirical formulas weight.

Whole-number multiple = $\frac{\text{molecular weight}}{\text{empirical formula weight}}$

In the vitamin-C example, the empirical formula is $C_3H_4O_3$ So the empirical formula weight is 3(12) + 4(1) + 3(16) = 88 amu. The experimentally determined molecular formula weight is 176 amu. The molecular weight is 2 times empirical weight (176/88 = 2). Then 2 ($C_3H_4O_3$) The molecular formula is $C_6H_8O_6$

Sample Exercise 3.14 Determining a Molecular Formula

Mesitylene, a hydrocarbon that occurs in small amounts in crude oil, has an empirical formula of C_3H_4 . The experimentally determined molecular weight of this substance is 121 amu. What is the molecular formula of mesitylene?

Solution

First, we calculate the formula weight of the empirical formula, C_3H_4 : 3(12.0 amu) + 4(1.0 amu) = 40.0 amu

 $\frac{\text{Molecular weight}}{\text{Empirical formula weight}} = \frac{121}{40.0} = 3.02$

We therefore multiply each subscript in the empirical formula by 3 to give the molecular formula: C_9H_{12}

Practice Exercise

Ethylene glycol, the substance used in automobile antifreeze, is composed of 38.7% C, 9.7% H, and 51.6% O by mass. Its molar mass is 62.1 g/mol. (a) What is the empirical formula of ethylene glycol? (b) What is its molecular formula? *Answers:* (a) CH₃O, (b) C₂H₆O₂

The word "**Empirical Formula**" means "based on observation and experiment".

Chemists have devised a number of experimental techniques to determine empirical formulas.

- Combustion Analysis
- Elemental Analysis

Combustion Analysis

Compounds containing C, H and O are routinely analyzed through combustion in a chamber.

- **C** is determined from the mass of CO₂ produced.
- **H** is determined from the mass of H_2O produced.
- O is determined by difference after the C and H have been determined.

Sample Exercise 3.15 Determining Empirical Formula by Combustion Analysis

Isopropyl alcohol, a substance sold as rubbing alcohol, is composed of C, H, and O. Combustion of 0.255 g of isopropyl alcohol produces 0.561 g of CO₂ and 0.306 g of H₂O. Determine the empirical formula of isopropyl alcohol.

Solution

To calculate the number of grams of C, we first use the molar mass of CO_2 , 1 mol $CO_2 = 44.0$ g CO_2 , to convert grams of CO_2 to moles of CO_2 . Because each CO_2 molecule has only 1 C atom, there is 1 mol of C atoms per mole of CO_2 molecules.

Grams C =
$$(0.561 \text{ g} \cdot \text{CO}_2) \left(\frac{1 \text{ mol} \cdot \text{CO}_2}{44.0 \text{ g} \cdot \text{CO}_2} \right) \left(\frac{1 \text{ mol} \cdot \text{C}}{1 \text{ mol} \cdot \text{CO}_2} \right) \left(\frac{12.0 \text{ g} \text{ C}}{1 \text{ mol} \cdot \text{C}} \right) = 0.153 \text{ g} \text{ C}$$

Grams H =
$$(0.306 \text{ g} \text{H}_2\text{O}) \left(\frac{1 \text{ mol H}_2\text{O}}{18.0 \text{ g} \text{H}_2\text{O}}\right) \left(\frac{2 \text{ mol H}}{1 \text{ mol H}_2\text{O}}\right) \left(\frac{1.01 \text{ g} \text{ H}}{1 \text{ mol H}}\right) = 0.0343 \text{ g} \text{ H}$$

Mass of O = mass of sample - (mass of C + mass of H) = 0.255 g - (0.153 g + 0.0343 g) = 0.068 g O

Solution (continued)

Moles C =
$$(0.153 \text{ g C}) \left(\frac{1 \text{ mol C}}{12.0 \text{ g C}}\right) = 0.0128 \text{ mol C}$$

Moles H = $(0.0343 \text{ g H}) \left(\frac{1 \text{ mol H}}{1.01 \text{ g H}}\right) = 0.0340 \text{ mol H}$
Moles O = $(0.068 \text{ g O}) \left(\frac{1 \text{ mol O}}{16.0 \text{ g O}}\right) = 0.0043 \text{ mol O}$

To find the empirical formula, we must compare the relative number of moles of each element in the sample. The relative number of moles of each element is found by dividing each number by the smallest number, 0.0043.

The mole ratio of C:H:O so obtained is (2.98 : 7.91 : 1.00).

Giving the empirical formula:

C_3H_8O .

Practice Exercise

(a) Caproic acid, which is responsible for the foul odor of dirty socks, is composed of C, H, and O atoms. Combustion of a 0.225-g sample of this compound produces 0.512 g CO₂ and 0.209 g H₂O. What is the empirical formula of caproic acid? (b) Caproic acid has a molar mass of 116 g/mol. What is its molecular formula? *Answers:* (a) C_3H_6O , (b) $C_6H_{12}O_2$

Elemental Analyses

Compounds containing other elements are analyzed using methods analogous to those used for C, H and O.

3.6 Quantitative Information from Balanced Equations

Quantitative Information from Balanced Equations

The coefficients in the balanced equation give the ratio of moles of reactants and products. Therefore, the mole concept allows us to convert this information to the masses of the substances.

Equation:	$2 H_2(g)$	+	$O_2(g)$	\longrightarrow	$2 H_2O(l)$
Molecules:	2 molecules H_2	+	1 molecule O_2	\longrightarrow	2 molecules H_2O
	\odot				
Mass (amu):	4.0 amu H ₂	+	32.0 amu O ₂	\longrightarrow	36.0 amu H ₂ O
Amount (mol):	2 mol H ₂	+	1 mol O ₂	\longrightarrow	2 mol H ₂ O
Mass (g):	4.0 g H ₂	+	32.0 g O ₂	\longrightarrow	36.0 g H ₂ O

The coefficients in the balanced chemical equation indicate both the relative numbers of molecules and the relative numbers of moles in the reaction.

 $2 \operatorname{H}_2(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{H}_2\operatorname{O}(l)$

 $2 \mod H_2 \cong 1 \mod O_2 \cong 2 \mod H_2O$

The quantities 2 mole H_2 , 1 mole O_2 and 2 mole H_2O are called stoichiometrically equivalent quantities.

These stoichiometric relations can be used to convert between quantities of reactants and products in a chemical equation.

For example, the number of moles of H_2O produced from 1.57 mole of O_2 can be calculated as follows:

Moles H₂O =
$$(1.57 \text{ mol } O_2) \left(\frac{2 \text{ mol } H_2O}{1 \text{ mol } O_2} \right) = 3.14 \text{ mol } H_2O$$

When 1.57 mol O_2 reacts with H_2 to form H_2O , how many moles of H_2 are consumed in the process?

$$2 \operatorname{C}_4\operatorname{H}_{10}(l) + 13 \operatorname{O}_2(g) \longrightarrow 8 \operatorname{CO}_2(g) + 10 \operatorname{H}_2\operatorname{O}(g)$$

Calculate the mass of CO_2 produced and O_2 consumed when 1.00 g of C_4H_{10} is burned?

 $2 \mod C_4 H_{10} \cong 8 \mod CO_2 \qquad 2 \mod C_4 H_{10} \cong 13 \mod O_2$

$$Moles C_4H_{10} = (1.00 \text{ g } C_4H_{10}) \left(\frac{1 \text{ mol } C_4H_{10}}{58.0 \text{ g } C_4H_{10}} \right) \qquad Moles CO_2 = (1.72 \times 10^{-2} \text{ mol } C_4H_{10}) \left(\frac{8 \text{ mol } CO_2}{2 \text{ mol } C_4H_{10}} \right) \\ = 1.72 \times 10^{-2} \text{ mol } C_4H_{10} \qquad = 6.88 \times 10^{-2} \text{ mol } CO_2$$

Grams CO₂ =
$$(6.88 \times 10^{-2} \text{ mol CO}_2) \left(\frac{44.0 \text{ g CO}_2}{1 \text{ mol CO}_2} \right) = 3.03 \text{ g CO}_2$$

Grams CO₂ =
$$(1.00 \text{ g C}_4\text{H}_{10}) \left(\frac{1 \text{ mol C}_4\text{H}_{10}}{58.0 \text{ g C}_4\text{H}_{10}}\right) \left(\frac{8 \text{ mol CO}_2}{2 \text{ mol C}_4\text{H}_{10}}\right) \left(\frac{44.0 \text{ g CO}_2}{1 \text{ mol CO}_2}\right)$$

= 3.03 g CO₂

Grams O₂ =
$$(1.00 \text{ g } C_4 \text{H}_{10}) \left(\frac{1 \text{ mol } C_4 \text{H}_{10}}{58.0 \text{ g } C_4 \text{H}_{10}} \right) \left(\frac{13 \text{ mol } O_2}{2 \text{ mol } C_4 \text{H}_{10}} \right) \left(\frac{32.0 \text{ g } O_2}{1 \text{ mol } O_2} \right)$$

= 3.59 g O₂

Stoichiometric Calculations

For the following general reaction:

A + 2 B \rightarrow 3 C + $\frac{1}{2}$ D

$\operatorname{mol} A = \frac{\operatorname{mol} B}{2} = \frac{\operatorname{mol} C}{3} = 2 \operatorname{mol} D$

Sample Exercise 3.16 Calculating Amounts of Reactants and Products

How many grams of water are produced in the oxidation of 1.00 g of glucose, $C_6H_{12}O_6$?

$C_6H_{12}O_6(s) + 6 O_2(g) \rightarrow 6 CO_2(g) + 6 H_2O(I)$

Solution

First, use the molar mass of $C_6H_{12}O_6$ to convert from grams $C_6H_{12}O_6$ to moles $C_6H_{12}O_6$: Second, use the balanced equation to convert moles of $C_6H_{12}O_6$ to moles of H_2O : Third, use the molar mass of H_2O to convert from moles of H_2O to grams of H_2O :

$$\begin{aligned} \text{Moles } C_6 \text{H}_{12} \text{O}_6 &= (1.00 \text{ g} \cdot \text{C}_6 \text{H}_{12} \text{O}_6) \left(\frac{1 \text{ mol } \text{C}_6 \text{H}_{12} \text{O}_6}{180.0 \text{ g} \cdot \text{C}_6 \text{H}_{12} \text{O}_6} \right) \\ \text{Moles } \text{H}_2 \text{O} &= (1.00 \text{ g} \cdot \text{C}_6 \text{H}_{12} \text{O}_6) \left(\frac{1 \text{ mol } \text{C}_6 \text{H}_{12} \text{O}_6}{180.0 \text{ g} \cdot \text{C}_6 \text{H}_{12} \text{O}_6} \right) \left(\frac{6 \text{ mol } \text{H}_2 \text{O}}{1 \text{ mol } \text{C}_6 \text{H}_{12} \text{O}_6} \right) \\ \text{Grams } \text{H}_2 \text{O} &= (1.00 \text{ g} \cdot \text{C}_6 \text{H}_{12} \text{O}_6) \left(\frac{1 \text{ mol } \text{C}_6 \text{H}_{12} \text{O}_6}{180.0 \text{ g} \cdot \text{C}_6 \text{H}_{12} \text{O}_6} \right) \left(\frac{6 \text{ mol } \text{H}_2 \text{O}}{1 \text{ mol } \text{C}_6 \text{H}_{12} \text{O}_6} \right) \\ &= 0.600 \text{ g} \text{ H}_2 \text{O} \end{aligned}$$

Sample Exercise 3.17 Calculating Amounts of Reactants and Products

Solid lithium hydroxide is used in space vehicles to remove the carbon dioxide exhaled by astronauts. The lithium hydroxide reacts with gaseous carbon dioxide to form solid lithium carbonate and liquid water. How many grams of carbon dioxide can be absorbed by 1.00 g of lithium hydroxide?

Solution

The verbal description of the reaction can be used to write a balanced equation:

 $2 \operatorname{LiOH}(s) + \operatorname{CO}_2(g) \rightarrow \operatorname{Li}_2\operatorname{CO}_3(s) + \operatorname{H}_2\operatorname{O}(l)$

We are given the grams of LiOH and asked to calculate grams of CO₂.

Grams LiOH \rightarrow moles LiOH \rightarrow moles CO₂ \rightarrow grams CO

The molar mass of LiOH (6.94 + 16.00 + 1.01 = 23.95 g/mol).

The conversion of moles of LiOH to moles of CO_2 is based on the balanced chemical equation:

 $2 \mod \text{LiOH} = 1 \mod \text{CO}_2.$

The molar mass of CO_2 : 12.01 + 2(16.00) = 44.01 g/mol.

```
Solve

(1.00 \text{ g-LiOH}) \left(\frac{1 \text{ mol-LiOH}}{23.95 \text{ g-LiOH}}\right) \left(\frac{1 \text{ mol-CO}_2}{2 \text{ mol-LiOH}}\right) \left(\frac{44.01 \text{ g-CO}_2}{1 \text{ mol-CO}_2}\right) = 0.919 \text{ g-CO}_2
```

Practice Exercise

The decomposition of $KClO_3$ is commonly used to prepare small amounts of O_2 in the laboratory:

 $2 \operatorname{KClO}_3(s) \to 2 \operatorname{KCl}(s) + 3 \operatorname{O}_2(g)$

How many grams of O_2 can be prepared from 4.50 g of KClO₃?

Answer: 1.77 g

Practice Exercise

Propane, C_3H_8 , is a common fuel used for cooking and home heating. What mass of O_2 is consumed in the combustion of 1.00 g of propane?

Answer: 3.64 g

3.7 Limiting Reactants

Limiting Reactants

How Many Cheese Sandwiches Can I Make?

The amount of available bread limits the number of sandwiches.

$$2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(g)$$

$$2 \mod H_2 \simeq 1 \mod O_2$$

Suppose, for example, mixture of 10 mole H_2 and 7 mole O_2 react to form water.

The number of O_2 needed to react with all the H_2 is:

In this example, H_2 would be the **limiting reactant**, which means that once all the H_2 has been consumed the reaction stops. And O_2 would be the **excess reactant**, and some is left over when the reaction stops.

The **limiting reactant** (or limiting reagent) is the reactant that is completely consumed in a reaction (present in the smallest stoichiometric amount).

Its called Limiting regent; because it determines or limits the amount of product formed.

Sample Exercise 3.18 Calculating the Amount of Product Formed from a

Limiting Reactant

The most important commercial process for converting N₂ from the air into nitrogencontaining compounds is based on the reaction of N₂ and H₂ to form ammonia (NH₃): N₂(g) + 3 H₂(g) \rightarrow 2 NH₃(g)

How many moles of NH_3 can be formed from 3.0 mol of N_2 and 6.0 mol of H_2 ?

Solution

The number of moles of H_2 needed for complete consumption of 3.0 mol of N_2 is:

Because only 6.0 mol H_2 is available, we will run out of H_2 before the N_2 is gone, and H_2 will be the limiting reactant. We use the quantity of the limiting reactant, H_2 , to calculate the quantity of NH₃ produced:

Moles H₂ =
$$(3.0 \text{ mol } N_2) \left(\frac{3 \text{ mol } H_2}{1 \text{ mol } N_2} \right) = 9.0 \text{ mol } H_2$$

Moles NH₃ = $(6.0 \text{ mol } H_2) \left(\frac{2 \text{ mol } NH_3}{3 \text{ mol } H_2} \right) = 4.0 \text{ mol } NH_3$

	N2(g)	+	3 H2(g)	\longrightarrow	2 NH ₃ (g)
Initial quantities:	3.0 mol		6.0 mol		0 mol
Change (reaction):	-2.0 mol		-6.0 mol		+4.0 mol
Final quantities:	1.0 mol		0 mol		4.0 mol

Sample Exercise 3.19 Calculating the Amount of Product Formed from a Limiting Reactant

Consider the following reaction that occurs in a fuel cell:

 $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$

This reaction, properly done, produces energy in the form of electricity and water. Suppose a fuel cell is set up with 150 g of hydrogen gas and 1500 grams of oxygen gas (each measurement is given with two significant figures). How many grams of water can be formed?

Solution

From the balanced equation:

 $2 \mod H_2 \cong 1 \mod O_2 \cong 2 \mod H_2O$

The number of moles of each reactant:

$$\begin{aligned} \text{Moles } H_2 &= (150 \text{ g} \cdot \text{H}_2) \bigg(\frac{1 \text{ mol } \text{H}_2}{2.00 \text{ g} \cdot \text{H}_2} \bigg) = 75 \text{ mol } \text{H}_2 \\ \text{Moles } \text{O}_2 &= (1500 \text{ g} \cdot \text{O}_2) \bigg(\frac{1 \text{ mol } \text{O}_2}{32.0 \text{ g} \cdot \text{O}_2} \bigg) = 47 \text{ mol } \text{O}_2 \end{aligned}$$

To completely react all the O_2 , we would need $2 \times 47 = 94$ moles of H_2 . Since there are only 75 moles of H_2 , H_2 is the limiting reagent. We therefore use the quantity of H_2 to calculate the quantity of product formed.

Grams H₂O =
$$(75 \text{ moles H}_2) \left(\frac{2 \text{ mol H}_2O}{2 \text{ mol H}_2}\right) \left(\frac{18.0 \text{ g H}_2O}{1 \text{ mol H}_2O}\right)$$

= 1400 g H₂O (to two significant figures)

Practice Exercise

Consider the reaction:

 $2 \operatorname{Al}(s) + 3 \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{AlCl}_3(s)$

A mixture of 1.50 mol of Al and 3.00 mol of Cl_2 is allowed to react. (a) Which is the limiting reactant? (b) How many moles of $AlCl_3$ are formed? (c) How many moles of the excess reactant remain at the end of the reaction?

Answers: (a) Al, (b) 1.50 mol, (c) 0.75 mol Cl₂

Practice Exercise

A strip of zinc metal with a mass of 2.00 g is placed in an aqueous solution containing 2.50 g of silver nitrate, causing the following reaction to occur:

$$\operatorname{Zn}(s) + 2\operatorname{AgNO}_3(aq) \rightarrow 2\operatorname{Ag}(s) + \operatorname{Zn}(\operatorname{NO}_3)_2(aq)$$

(a) Which reactant is limiting? (b) How many grams of Ag will form? (c) How many grams of $Zn(NO_3)_2$ will form? (d) How many grams of the excess reactant will be left at the end of the reaction?

Answers: (a) AgNO₃, (b) 1.59 g, (c) 1.39 g, (d) 1.52 g Zn

Theoretical Yields

- The **theoretical yield** is the maximum amount of product that can be made (when all of the limiting reactant reacts).
- In other words it's the amount of product possible as calculated through the stoichiometry problem.
- This is different from the **actual yield**, which is the amount one actually produces in a reaction and measures.
- The actual yield is almost always less than (and can never be greater than) the theoretical yield.
- Reasons because part of the reactants may not react, or may react in a way different from the desired (side reactions), or its not always possible to recover all of the product from the reaction mixture.

Percent Yield

One finds the percent yield by comparing the amount actually obtained (actual yield) to the amount it was possible to make (theoretical yield).

$$Percent yield = \frac{actual yield}{theoretical yield} \times 100\%$$

Sample Exercise 3.20 Calculating the Theoretical Yield and the Percent Yield for a Reaction

Adipic acid, $H_2C_6H_8O_4$, is used to produce nylon. The acid is made commercially by a controlled reaction between cyclohexane (C_6H_{12}) and O_2 :

$2 \text{ C}_6\text{H}_{12}(\textit{I}) + 5 \text{ O}_2(\textit{g}) \rightarrow 2 \text{ H}_2\text{C}_6\text{H}_8\text{O}_4(\textit{I}) + 2 \text{ H}_2\text{O}(\textit{g})$

(a) Assume that you carry out this reaction starting with 25.0 g of cyclohexane and that cyclohexane is the limiting reactant. What is the theoretical yield of adipic acid?

(b) If you obtain 33.5 g of adipic acid from your reaction, what is the percent yield of adipic acid?

Solution

(a) Grams H₂C₆H₈O₄ = (25.0 g C₆H₁₂)
$$\left(\frac{1 \text{ mol } C_6H_{12}}{84.0 \text{ g } C_6H_{12}}\right) \left(\frac{2 \text{ mol } H_2C_6H_8O_4}{2 \text{ mol } C_6H_{12}}\right) \left(\frac{146.0 \text{ g } H_2C_6H_8O_4}{1 \text{ mol } H_2C_6H_8O_4}\right)$$

= 43.5 g H₂C₆H₈O₄
(b) Percent yield = $\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\% = \frac{33.5 \text{ g}}{43.5 \text{ g}} \times 100\% = 77.0\%$

Practice Exercise

Imagine that you are working on ways to improve the process by which iron ore containing Fe_2O_3 is converted into iron. In your tests you carry out the following reaction on a small scale:

$\operatorname{Fe}_2\operatorname{O}_3(s) + 3\operatorname{CO}(g) \rightarrow 2\operatorname{Fe}(s) + 3\operatorname{CO}_2(g)$

(a) If you start with 150 g of Fe_2O_3 as the limiting reagent, what is the theoretical yield of Fe? (b) If the actual yield of Fe in your test was 87.9 g, what was the percent yield?

Answers: (a) 105 g Fe, (b) 83.7%

When hydrocarbons are burned in air, they form:

a. water and carbon dioxide

- b. charcoal
- c. methane
- d. oxygen and water

The formula weight of Na_3PO_4 is:

- a. 70 grams/mole
- b. 164 grams/mole
- c. 265 grams/mole
- d. 116 grams/mole

The percentage by mass of phosphorus in **Na₃PO₄** is:

- a. 44.0%
- b. 11.7%
- c. 26.7%

d. 18.9%

The formula weight of any substance is equal to:

- a. Avogadro's number
- b. its atomic weight
- c. its density
- d. its molar mass

Ethyl alcohol contains 52.2% C, 13.0% H, and 34.8 % O by mass. What is the empirical formula of ethyl alcohol?

- a. $C_2H_5O_2$
- b. C_2H_6O
- c. $C_2H_6O_2$
- d. $C_{3}H_{4}O_{2}$
Methyl methacrylate has a molar mass of 100 g/mole. When a sample of methyl methacrylate weighing 3.14 mg was completely combusted, the only products formed were 6.91 mg of CO_2 and 2.26 mg of water. What is methyl methacrylate's molecular formula?

a. C_7H_{16} b. $C_6H_{12}O$ c. $C_5H_8O_2$ d. $C_4H_4O_3$

$2 \text{ Fe} + 3 \text{ Cl}_2 \rightarrow 2 \text{ FeCl}_3$

If 10.0 grams of iron and 20.0 grams of chlorine react as shown, what is the theoretical yield of ferric chloride?

- a. 10.0 grams
- b. 20.0 grams
- c. 29.0 grams
- d. 30.0 grams

$C_3H_4O_4 + 2C_2H_6O \rightarrow C_7H_{12}O_4 + 2H_2O_4$

When 15.0 grams of each reactant were mixed together, the yield of $C_7H_{12}O_4$ was 15.0 grams. What was the percentage yield?

- a. 100.0%
- b. 75.0%
- c. 65.0%
- d. 50.0%

The percentage yield of a reaction is (100.0%)(X). Which of the following is X?

- a. theoretical yield / actual yield
- b. calculated yield / actual yield
- c. calculated yield / theoretical yield
- d. actual yield / theoretical yield

How many oxygen atoms are present in MgSO₄.7 H₂O?

- 4 oxygen atoms
- 5 oxygen atoms
- 7 oxygen atoms
- 11 oxygen atoms
- 18 oxygen atoms

How many sulfur atoms are present in 1.0 mole of $AI_2(SO_4)_3$?

- 1 sulfur atom
- 3 sulfur atoms
- 4 sulfur atoms
- 6.0 x 10²³ sulfur atoms
- 1.8 x 10²⁴ sulfur atoms

If you have equal masses of the following metals, which will have the most number of atoms?

- 1. lithium
- 2. sodium
- 3. potassium
- 4. rubidium
- 5. calcium

Copyright © 2006 Pearson Prentice Hall, In

An alkali metal

Copyright © 2006 Pearson Premise Hall, Inc.

How many moles of oxygen gas are required to react completely with 1.0 mole NO?

 $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{NO}_2(g)$

1. 0.5 mol O_2 2. 1.0 mol O_2 3. 1.5 mol O_2 4. 2.0 mol O_2 5. 2.5 mol O_2

Copyright © 2009 Pearson Prentice Hall, Inc.

If 10.0 moles of NO are reacted with 6.0 moles O_2 , how many moles NO_2 are produced?

 $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \longrightarrow 2 \operatorname{NO}_2(g)$

1. 2.0 mol NO₂
2. 6.0 mol NO₂
3. 10.0 mol NO₂
4. 16.0 mol NO₂
5. 32.0 mol NO₂

Copyright © 2006 Pearson Prentice Hall, Inc.

If 10.0 moles of NO are reacted with 6.0 moles O_2 , how many moles of the excess reagent remain?

1. 1.0 mol O₂
2. 5.0 mol O₂
3. 4.0 mol NO
4. 8.0 mol NO

Copyright @ 2006 Pearson Prentice Hall, Inc.

5. None of the above

Calculate the percentage of nitrogen, by mass, in $Ca(NO_3)_2$.

Answer: 17.1%

(a) How many nitric acid molecules are in 4.20 g of HNO_3 ? (b) How many O atoms are in this sample?

Answer: (a) 4.01×10^{22} molecules HNO₃, (b) 1.20×10^{23} atoms O

