King Saud University
College of Engineering
IE — 462: “Industrial Information Systems”

Fall — 2019 (15t Sem. 1440-41H)

Chapter 2

Information System Development - p1

Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview

« System Development Life Cycle (SDLC)

* Programming Languages

[

System Development Life Cycle
(SDLC)

O

System Development Life Cycle (SDLC)

« System Development Life Cycle (SDLC):
o fraditional methodology/process followed in an organization

o used to plan, analyze, design, implement and maintain
information systems

o System analyst is responsible for analyzing and designing an
information system

® |[E462 e 4

« Phasesin SDLC:

@)

O

O

@)

O

® [E462

Planning
Analysis

Design
Implementation

Maintfenance

SDLC- Cont.

Maintenance

J

Analysis

implemantation

/

®5

SDLC- Cont.

* Planning — an organization’s total information
system objectives or purposes are identified,
analyzed, prioritized, and arranged

* Analysis — system requirements are studied and
stfructured (this’'s called system analysis)
Includes feasibility analysis:

o technical feasibility

o economic feasibility

o legal feasibility

® |[E462

056

SDLC- Cont.

Design — a description of the recommended
solution is converted into logical and then physical
system specifications

o Logical design: all functional feafures of the system chosen
for development in analysis are described independently
of any computer platform

o Physical design: fransforming the logical specifications of
the system into technology-specific details

® |[E462 e/

SDLC- Cont.

« Design — cont.
o See below: difference between physical and logical design

REV. DATE

2., okateboard ramp blueprint (logical design) A skateboard ramp (physical desigrg)

SDLC- Cont.

* Implementation — information system is:
o coded (i.e. programmed)

o tested (includes unit test, system test, user-acceptance test)

o Installed (fraining users, providing documentation, and
conversion from previous system to new system)

* Maintenance - information system is systematically
repaired and improved

o structured support process: reported bugs are fixed, requests
for new features are evaluated and implemented

o system updates/backups are performed on a regular basis

® |[E462 o9

Types of SDLCs

 SDLC can be performed in several different ways:
o Traditional Waterfall SDLC

o Iterative SDLC
o Rapid Application Development (RAD)
o Agile Methodologies

o Lean Methodology

® |[E462 ®10

SDLC Types: 1. Traditional Waterfall SDLC

 One phase begins when another completes, with
little backtracking and looping

Planning _w
Analysis W

Logical

=
Design _w

‘ Physical

Design _w
Implementation W

faintenance ‘

® |[E462 o1]

Problems with Waterfall Approach

« Quite rigid: system requirements can't change after
being determined

« No software is available until after the programming
phase

« Limited user cooperation (only in requirements
phase)

Projects can sometimes take months/years to
complete

® |[E462 ®12

SDLC Types: 2. Iterative SDLC

 Development phases are repeated as required
until an acceptable system is found

T Implementation

« User participates

« Spiral (evolutionary) |
development SDLC e |
In which we constantly
cycle through phases
at different levels of details

Planning ot

® |[E462 ®13

3. Rapid Application Development (RAD)

« Systems-development methodology that focuses on
quickly:
o building working model of software

o geftting feedback from users
o using that feedback to update the working model
o making several iterations of development

o developing/implementing a final version

» This greatly decreases design / implementation time
= shortened development (compressed process)

« Uses extensive user cooperation, prototyping,
. Integrated CASE tools, and code generators o4

Rapid Application Development (RAD) - cont

Requirements
Planning

‘ UserDesign Construction

® |E462 ®15

Rapid Application Development (RAD) - cont

* Requirements planning:
o overall requirements for system are defined

o tfeam is identified, and

o feasibility is determined (similar o analysis/design phases in
Waterfall Approach)

« User design:

o prototyping the system with the user using CASE tools in
creating interfaces/reports

o €.g. JAD (joint application development) session: all
stakeholders have a structured discussion about design of the
system

® |[E462 ®16

Rapid Application Development (RAD) - cont

« Consiruction:
o coding the system using CASE tools

o it is an interactive, iterative process

o and changes can be made as developers are working on the
program

« Cutover:
o delivery of developed system (i.e. implementation)

® |[E462 e/

SDLC Types: 4. Agile Methodologies

Group of methodologies that utilize incremental
changes with a focus on quality, details (started: 2001)

Each increment is released in a specified time (called a
“time box"”) = regular release schedule with very
specific objectives

Share some RAD principles:
o Iterative development

o user interaction

o ability to change

Goal: provide flexibility of iterative approach, while
ensuring a quality product

® |E442 ®18

SDLC Types: 5. Lean Methodology

 Lean Methodology:
o New concept

o Focusis on taking initial idea and developing minimum viable
product (MVP)

o MVP: working software application with just enough
functionality to demonstrate
the idea behind the project

o MVP is given to potential users
for review; feam then determines

whether o continue in same
direction or rethink idea
behind project = new MVP

o lterative process: until
final product is completed
® |[E462 ®]9

Note: Quality Triangle

Time

Simple concept: for any product/service
being developed, you can only address
2 of the following:
o Time

o Cost

o Quality

Quality Cost

e.g. you cannot complete a low-cost, high-quality
project in a small amount of fime

Also, If you can spend a lot of money = project can
be completed quickly with high-quality results

If completion date is nhot a priority, then it can be
completed at a lower cost with higher-quality results

o e 20
|IE462

Programming Languages

e2]

Programming Languages

« One way to characterize programming languages
IS by their *generation”:
o First-generation languages

o Second-generation languages
o Third-generation languages

o Fourth-generation languages

® |[E462 ®2?2

Programming Languages (cont.)

« First-generation languages
o Called machine code: specific to the type of hardware to

be programmed

o Each type of computer hardware has @

different low-level programming language

o Uses actual ones and zeroes (bits)

in the program, using binary code

o Example here: adds ‘1234’ and ‘4321’

® |[E462

using machine language

10111001
110100160
00000100
10001001
00001110
00000000
00000000
(5le]oolo1515%)
10111001
11100001
00010000
10001001
00001110
0000010

00000000
10100001
00000000
00000000
10001011
00011110
00011110
00000010
5[oo]o]%]%]5]%
00000011
11000011
10100011
00000100
5[oo]ol%]2]5]%

23

Programming Languages (cont.)

« Second-generation languages

o Called Assembly language (also low-level language)

o Gives English-like phrases to machine-code instructions,

making it easier to program

o Run through an assembler, which converts it into machine

code MOV

o See here program that adds MOV
‘1234’ and ‘4321’ MOV
using assembly language MOV
MOV

ADD

MOV

® |[E462

CX,1234
DS:[0],CX
CX,4321
AX,DS:[0]
BX,DS:[2]
AX, BX
DS:[4],AX

@24

Programming Languages (cont.)

« Third-generation languages

O

O

O

® |[E462

Nof specific 1o type of hardware on which they run

Much more like spoken languages

Most third-generation languages must be compiled, o
process that converts them into machine code

Well-known third-generation languages: A=1234
BASIC, C, Pascal, and Java
B=4321
Here is a program (in BASIC) that adds _
1234 and *4321° C=A+B
END

®25

Programming Languages (cont.)

« Fourth-generation languages

o Class of programming tools that enable fast application
development using intuitive interfaces and environments

® |[E462

Have very specific purpose, such as database interaction

or report-writing

Can be used by those
with very little fraining in
programming; allow for
quick development

of applications

and/or functionality

Examples:
Clipper, FOCUS,
FoxPro, SQL, and SPSS

.75, Employer -- Employer 00021-02: WCTC DESEKEL MALL
1-Employer List | 2 - Employer Details] 3-Owners & Comments | 4 - Annual Summary

Display Status (O Active Only (O Inactive Only (O Closed Only @ All
(O Active Employers who have not filed returns for the previous

Filter

‘ 5 - Retums Filed] - Mis

S
c. Payments [7 - Return Transactions

Look for Empl. ID -

Soozred [woreE urrent Location BELAU [PALAU]
00021-05 _|wCTc

- Date of Birth | 4 3 Occupatio
0002105 |BF DEF) 03/05/1945 | T | Age: 71 upation

itizenship [PALAU |

00021-07
00021-08

E Documented Date of Birth

Date of Birth | 02/051945 | 7] Document Type I:l
Documentoate || i Documentgorm [|

Current Employer (updated when wages

SS Certification
Employer -

are posted)

Empl.ID~ Name status Renewal Stal Loc state Hamiet Bus. sic SIC Detail__ Owner LastAudit _ Auditor A
00001-00__[ADDEDBYC] € [[I [TUNK [[1 T [
00010-00 _|USE FCI. 73" Social Security Master -- Add SSNO = =R =
0001200 [KING'S
0001300 |AD0ED 1-Master List 2- Applicant Details ‘ 3. Benefits and Other SSNO # Info | 4- History
00014-00 |ADDED Social Security Number For Employment (see page 4 for history and to modify)
00016-00__|ADDED
00017-00__|ADDE LoguiBame
00018-00__|KINGS FirstName | SARAH | Lastmame |[connor Name at Birth

UAN I
00020-00_|VAN CAl Address |:| [General Delivery
00021-00 |SHOPP E-mail Address
0002101 |WESTF|

T —)

@26

Programming Languages (cont.)

Higher vs. Lower Level Languages

o Lower-level languages (e.g. assembly language): much
more efficient and execute much more quickly; you have
finer control over the hardware as well

o Sometimes, combination of higher- and lower-level
languages are mixed = “best of both worlds”: overall
stfructure and interface using a higher-level language, but
use lower-level languages for parts of program that are
used many times or require more precision

Low-level languages High-level languages
Machine-dependent Machine-independent
Machine Third-generation Fourth-generation
Language languages (C, Basic, languages (SQL,
C++, Java) ABAP,
A 5 ColdFusion)
ssembly -
® [E462 Language ®2/

Programming Languages (cont.)

« Compiled vs. Interpreted

O

O

® |[E462

Another way to classify programming languages

Compiled language: code is translated into a machine-
readable form called an “executable” that can be run on
the hardware (e.g. C, C++, and COBOL)

Interpreted language: requires a “runtime program” to be
installed in order to execute; this program then interprets

the program code line by line and runs it; generally easier
to work with but slower (e.g. BASIC, PHP, PERL, and Python)

Web languages (HTML and Javascript) also considered
interpreted because they require a browser in order to run

Note, Java programming language: interesting exception
to this classification (hybrid of the two)

e 28

Programming Languages (cont.)

* Procedural vs. Object-Oriented
o Procedural programming language: designed to allow a

® |[E462

programmer to define a specific starting point for the
program and then execute sequentially (include all early
programming languages)

Object-oriented programming language: uses inferactive
and graphical user interfaces (GUI) to allow the user to
define the flow of the program

« programmer defines “objects” that can take certain
actions based on input from the user

Procedural program focuses on sequence of activities to
be performed, while object-oriented program focuses on
the different items being manipulated

®29

Programming Languages (cont.)

« Procedural vs. Object-Oriented (cont.)
o Example of object-oriented code (human resource system)

o object ("EMPLOYEE") is created in program to retrieve or
set data regarding an employee

o Every object has properties: descriptive fields associated
with the object (“Name”, "Employee number”, “Birthdate”
and “Date of hire"”)

o Object also has methods Object: EMPLOYEE
which can ’ra.ke actions related Nania
fo the object: Employee number
“ComputePay()": money owed to person | Birthdate
“ListEmployees()"”: who works under Date of hire

that employee
ComputePay()

ListEmployees()

® |[E462

Programming Languages (cont.)

* Programming Tools

o Traditional Tools: text editor, checking syntax, code
compiler

o Additional tools:
 Integrated Development Environment (IDE)

« Computer-Aided Software-Engineering (CASE) tools

® |[E462 e3]

Programming Languages (cont.)

 Programming Tools (cont.)
Integrated Development Environment (IDE) provides:

O

® |[E462

an editor for writing the program that will color-code or
highlight keywords from the programming language

help system
compiler/interpreter
debugging tool (to resolve problems)

check-in/check-out mechanism (so that more than one
programmer can work on code)

Microsoft Visual Studio: IDE for Visual C++, Visual BASIC

® 32

Programming Languages (cont.)

« Programming Tools (cont.)

Integrated Development Environment (IDE) example

Session Project Run Navigation

(&) Build [¥] Execute [} Debug
@

E Projects
S| BB e g e
2" » [& bazaar
» [classbrowser
o > [codeutils
E > [contextbrowser
3 > [eovs
8 > [M] documentswitcher
> [F documentview

w [F] execute

[kdevexecute

[F1 CMakeLists.txt

h debugh
* executeplugin.cpp
executeplugin.h
iexecuteplugin.h
_ kdevexecute.json
Messages.sh
nativeappconfig.cpp
nativeappconfig.h
nativeappconfig.ui
nativeappjob.cpp
nativeappjob.h

£’ projecttargetscomb...
h projecttargetscomb...

> [F executescript
» [© externalscript
> [filemanager
> [filetemplates
» [E genericprojectmanager
?
>
>
>

[Projects

T N8By 0,

[git

[grepview
[konsole
[openwith

Build Sequence A

Name Path

[kdevplatf... kdevplatform

® [E462

stopAll (=) Stop | [J) New [B] save [} saveas

File Edit Tools View Bookmarks Code | Window Settings Help

Quick Open.

[, Commit...

nativeappconfig.cpp €3

QListWidgetItem* item = new QLLftNLdgetItL‘mf i, targetDependency- >text(), dependencies];
item->setDatal Qt::UserRole, targetDependency- >1temPath(l Ej
targetDependency-=setText(QLatinlString(""));

addDependency->setEnabled(false)

~
dependencies-»selectionModel()->clearSelection();
item- >set5e1e(tedt‘truel,
depe cies=>g ()->zele de| 5 L) ->index(depe >ra {1 1]
¥
vold NativepppConfigPage::selectItemDialogi)
v
- if{targetDependency->selectTtemDialog(}) {
addDep();
}
void NativepppConfigPage::removeDep()
{
Qlist=<QlistWidgetTtem#> List = dependencies-»selectedItems();
if(!list.isEmpty())
v {
Q_ASSERT(Llist.count{} == 1);
int ro dependencies->row(list.at(®));
delete dependencies->takeltem{ row);
dependencies->selectionModel()->select(dependencies->model()->index{ row - 1, 0, QModelIndex()), QTtemSelectionMadel::Clearar
1
}
void NativeAppConfigPage::saveToConfiguration{ KConfigGroup cfg, KDevelop::IProject® project) const
v
Q_UNUSE D{ project };
cfg.writeEntry{ ExecutePlugi ExecutableEntry, executableRadio- >15[he(kedf] b
cfo.writeEntry(ExecutePlugi executabl try, executablePath->url()
cfg.writeEntry(ExecutePlugi projectTargetEntry, projectTarget- :\-(urrentItemPatn(] ¥i
cfg.writeEntry{ ExecutePlugi argumentsEntry, arguments->text() };
cfg.writeEntry(ExecutePlugin::workingDirEntry, workingDirectory-=url{} };
cfg.writeEntryl ExecutePlugi environmentGroupEntry, environment->currentProfile() };
cfg.writeEntry(ExecutePlugi useTerminalEntry, runInTerminal->isChecked());
cfg.writeEntry(ExecutePlugi terminalEntry, terminal->currentText(} };
cfg.writeEntry(£xecute"LugL iidependencyActionEntry, dependencyAction- >1temDataE dependencyhction->currentIndex() }.toStringl));
Qvar st 3
for(int R ‘e dependencies->count(); i++)
{
deps << dependencies->item(}-»datal Qt::UserRole);
1
cfg.writeEntryl ExecutePlugin::dependencyEntry, KDevelop::qvariantToStringl QVariant(deps }) };
}
b 0string MativeAppContigPage::title() const
w {

)
[

return il8n("Configure Native Application”});

() showImports Scope: Current Document Bl |
Problem Source File Line Colur
[0 TODO: Make sure to auto-add the executable target to the dependencies when its used, To-do nativeappconfig.cpp 68 3

[{ TODO: we probably want to flexibilize, but at least we won't be accepting wrong values anymore To-do

nativeappconfig.cpp 415 5

33

Programming Languages (cont.)

 Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools:

o Allows a designer to develop software with little or no
programming

o Writes the code for the designer

o Goalis to generate quality code based on input created
by the designer

® |[E462 ®34

Programming Languages (cont.)

« Programming Tools (cont.)
Computer-aided software-engineering (CASE) example:

S Rational 2oss

2dl Time - extelnalCiUsingGlobassndThweac. pinndl - [Slass Plaaratin: |..l.".|!:il.'-.-'.| T eer .'. ’-'!F.I'J"Ii

Eel Fe Edb yie Browse BLED Report ouend Toolssmddins

e s H e

DM & pm@Blvo|R2adsFOoEle s o mE o me | @ 2

@M-mzl

?'E ilea Crsm Wi
| -2 Extarnal PartlUisoans
! Mo

iR Capeule

| E EsernalThead

? @ Logicz] Wieys
:

£

HEC AT e ses

b 23 StendardLibraies
{ B g7 Howd all works
R = - T
PO Thesd
i B8 Top
E- B Cornponsri Wiew

BT RTCComponants

(=&l Main
Vil SiendordUibiangs
P ED TheZlapiulslz=e
B2y Deploament wisw

s ﬂu Msin

B - aindaws

- - 8 ThaCl=me ileExglnzioncs

® [E462

This capsule simis th
e esbmrnal firesd, and
then receies the
Evernts ram it

The exernal prolocol pravdes =
mechanimsignal sn svantin =
cap=ule

g S i Qe T = e rdC e e
provicas en AR hel s nondSose

@i en e le A

oa
LEP ool ey
CEdmmial
Hiom FTCClesas)

=amwent feoid)

hite ol using - Extemplpar o
bl oongoeule vsing @ celback

fermamplerurs onwind2 onlyibecase
wnd? cals o creale s himad)

crCapsulesr
Top

%

Seaunlim =0

¥ ¢ =demal CHosEmml

ind}.ntie-s

N

“hecludes
.'h

|

AThread

Wt thiesxemal Fod: BT o=
Bk intialived: cher =10

Thzclaes Jilit: canta
non-FuosaRT code. ki
ugss e sstemal &L

Whoraahal)

A FEEun

s amExemolFon]

capeids

P H 3

inchiffas

W

lné‘-u_rlla-a

\-\.

Ee

eilio

dram Stand=rdiibraries

il
ffrom Standardl branes)

weindoes

ffrom Smndard_ibranias

35

Programming Languages (cont.)

 Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools (cont.):
o Diagramming tools enable graphical representation

o e.g. Unifled Modeling Language (UML): general-purpose,
developmental, modeling language used to visualize the
design of a system

o Computer displays and report generators help prototype
how systems “look and feel”

o Code generators enable automatic generation of
programs and database code directly from design
documents, diagrams, forms, and reports

® |[E462 @36

