King Saud University
College of Engineering
IE — 462: “Industrial Information Systems”

Spring — 2020 (24 Sem. 1440-41H)

Chapter 2

Information System Development — pl

Prepared by: Ahmed M. El-Sherbeeny, PhD

Lesson Overview

« System Development Life Cycle (SDLC)

 Programming Languages

o2

System Development Life Cycle
(SDLC)

O

System Development Life Cycle (SDLC)

« System Development Life Cycle (SDLC):
o traditional methodology/process followed in an organization

o0 used to plan, analyze, design, implement and maintain
iInformation systems

o System analyst is responsible for analyzing and designing an
information system

® |[E462 o4

* Phases in SDLC:

O

O

O

O

O

® |[E462

Planning
Analysis

Design
Implementation

Maintenance

SDLC- Cont.

‘ Analysis

/

Planning
Maintenance
II'I"IPIEI'I'IEI'I'tﬂtiDI'I —

Design

e5

SDLC- Cont.

« Planning — an organization’s total information
system objectives or purposes are identified,
analyzed, prioritized, and arranged

« Analysis - system requirements are studied and
structured (this’s called system analysis)
Includes feasibility analysis:

o technical feasibility

o0 economic feasibility

o legal feasibility

® |[E462

®6

SDLC- Cont.

Design — a description of the recommended
solution is converted into logical and then physical
system specifications

o Logical design: all functional features of the system chosen
for development in analysis are described independently
of any computer platform

o0 Physical design: transforming the logical specifications of
the system into technology-specific details

® |[E462 L

SDLC- Cont.

« Design - cont.
o0 See below: difference between physical and logical design

1. QUANTITY REQUIRED: 2
NNNNN ; DRAWN BY:

CAD FILE:

2,..,Skateboard ramp blueprint (logical design) A skateboard ramp (physical desigrg)

SDLC- Cont.

* Implementation — information system is:
0 coded (i.e. programmed)

o tested (includes unit test, system test, user-acceptance test)

o installed (training users, providing documentation, and
conversion from previous system to new system)

« Maintenance - information system is systematically
repaired and improved

o structured support process: reported bugs are fixed, requests
for new features are evaluated and implemented

o system updates/backups are performed on a regular basis

® |[E462 ®9

Types of SDLCs

« SDLC can be performed in several different ways:
o Traditional Waterfall SDLC

o Iterative SDLC
o Rapid Application Development (RAD)
o Agile Methodologies

o Lean Methodology

® |[E462 ®10

SDLC Types: 1. Traditional Waterfall SDLC

 One phase begins when another completes, with

little backtracking and looping

Planning _w

Analysis H

Logical

Design _w

Physical
Design

® |[E462

B

Implementation

hMaintenance ‘

11

Problems with Waterfall Approach

* Quite rigid: system requirements can't change after
being determined

* No software is available until after the programming
phase

e Limited user cooperation (only in requirements
phase)

Projects can sometimes take months/years to
complete

® |[E462 ®12

SDLC Types: 2. Iterative SDLC

 Development phases are repeated as required
until an acceptable system is found

Design —

« User participates

T—__ Implementation
e

« Spiral (evolutionary) |
development SDLC s
In which we constantly
cycle through phases
at different levels of details

Planning —~—— /

® |[E462 ®13

3. Rapid Application Development (RAD)

« Systems-development methodology that focuses on
guickly:
o building working model of software

o getting feedback from users
o using that feedback to update the working model
0 making several iterations of development

0 developing/implementing a final version

« This greatly decreases design / implementation time
= shortened development (compressed process)

« Uses extensive user cooperation, prototyping,
. Integrated CASE tools, and code generators ol

Rapid Application Development (RAD) - cont

Requirements
Planning

‘ UserDesign Construction

® |[E462 e15

Rapid Application Development (RAD) - cont

« Requirements planning:
o overall requirements for system are defined

o team is identified, and

o feasibility is determined (similar to analysis/design phases in
Waterfall Approach)

« User design:

0 prototyping the system with the user using CASE tools in
creating interfaces/reports

o e.g. JAD (joint application development) session: all
stakeholders have a structured discussion about design of the

system

® |[E462 016

Rapid Application Development (RAD) - cont

« Construction:
0 coding the system using CASE tools

O itis an interactive, iterative process

o and changes can be made as developers are working on the
program

 Cutover:
o delivery of developed system (i.e. implementation)

® |[E462 e17

SDLC Types: 4. Agile Methodologies

Group of methodologies that utilize incremental
changes with a focus on quality, details (started: 2001)

Each increment is released in a specified time (called a
“time box) = regular release schedule with very
specific objectives

Share some RAD principles:
O iterative development

O user interaction

o ability to change

Goal: provide flexibility of iterative approach, while
ensuring a quality product

® E462 018

SDLC Types: 5. Lean Methodology

 Lean Methodology:
0 New concept

0 Focus is on taking initial idea and developing minimum viable
product (MVP)

o MVP: working software application with just enough
functionality to demonstrate

the idea behind the project
o MVP is given to potential users
for review; team then determines

whether to continue in same
direction or rethink idea
behind project = new MVP

O Iterative process: until

final product is completed Data
® [E462 ®19

Note: Quality Triangle

Time

Simple concept: for any product/service
being developed, you can only address
2 of the following:
o Time
o Cost

o Quality Quality Cost

e.g. you cannot complete a low-cost, high-quality
project in a small amount of time

Also, if you can spend a lot of money = project can
be completed quickly with high-quality results

If completion date is not a priority, then it can be
completed at a lower cost with higher-quality results

o e 20
[E462

Programming Languages

e21

Programming Languages

« One way to characterize programming languages
Is by their “generation”:
o First-generation languages

o0 Second-generation languages
o Third-generation languages

o Fourth-generation languages

® |[E462 022

Programming Languages (cont.)

« First-generation languages
o Called machine code: specific to the type of hardware to

be programmed

o Each type of computer hardware has a

different low-level programming language

0 Uses actual ones and zeroes (bits)

In the program, using binary code

o Example here: adds ‘1234’ and ‘4321’

® |[E462

using machine language

10111001
110100160
00000100
10001001
00001110
00000000
00000000
(5lo]oo]e1515]%)
10111001
11100001
00010000
10001001
00001110
0000010

00000000
10100001
00000000
00000000
10001011
00011110
00011110
00000010
5[oo]o]%]%]5]%
00000011
11000011
10100011
00000100
5[oo]ol%]%]5]%

®23

Programming Languages (cont.)

« Second-generation languages
Called Assembly language (also low-level language)

O

O

® |[E462

Gives English-like phrases to machine-code instructions,

making it easier to program

Run through an assembler, which converts it into machine

sode MOV CX,1234

See here program that adds MOV DS:[@],CX

‘1234’ and ‘4321’ MOV CX,4321

using assembly language MOV AX,DS : [@]
MOV BX,DS:[2]
ADD AX,BX

MOV

DS:[4],AX

24

Programming Languages (cont.)

« Third-generation languages

O

O

O

® |[E462

Not specific to type of hardware on which they run
Much more like spoken languages

Most third-generation languages must be compiled, a
process that converts them into machine code

Well-known third-generation languages: A=1234
BASIC, C, Pascal, and Java

B=4321
Here is a program (in BASIC) that adds C=A+B

‘1234’ and ‘4321’
END

® 25

Programming Languages (cont.)

« Fourth-generation languages

Class of programming tools that enable fast application
development using intuitive interfaces and environments

O

® |[E462

Have very specific purpose, such as database interaction

or report-writing

Can be used by those
with very little training in
programming; allow for
guick development

of applications

and/or functionality

Examples:
Clipper, FOCUS,
FoxPro, SQL, and SPSS

. Ermptoer - Employer 000100 WOTC DESEREL MALL ==

=

—
1 - Employer List il 2-EmployerDefails | 3-Owners& Comments | 4-Annual Summary | 5-Retwnsfiled | 6-Misc Payments 1-Retum Transactions |
Bisplay Satus Jidcve dnly inacke Oaly () Glosed Only (@) Al Louk for Empl. 1D | - H
{7} Actien Emplagers whia have notfiled retisms for the prevous
Filter H

- Hame aks Hencwal Mallo Riala Hambat His B AR edad ramer fast Ladid Asddar ~
ME ADDEDEYC] ¢ | | [TUNK] | | ”

'uﬂ J"H-\ll-_fﬂ.ﬁf. Sooat Socunty Masfor | Add SING

- = 1 _Master List 2- Appicant Detalks 3_Benefits and ther SSHO 2inio

Social Security Number 4 For Employment [See page 4 for history and to modify)

| tasthame |rrmnoR Hame af Birin

| | | General Nielvery
F mall Aakirass

Zip Codw | 96040 Phone:

Cannenl Lucabon DILAU [PALALY stte []
TR | 4 Occupanon
) —
0,
0 ritad St Fmployer at Application
ooozi fo Purents
000z1-11
TR 447 T =

[AGE S 108 ISty
Foamtry and to medity)

Save Cancel

26

Programming Languages (cont.)

« Higher vs. Lower Level Languages

o Lower-level languages (e.g. assembly language): much
more efficient and execute much more quickly; you have
finer control over the hardware as well

o0 Sometimes, combination of higher- and lower-level
languages are mixed = “best of both worlds”: overall
structure and interface using a higher-level language, but
use lower-level languages for parts of program that are
used many times or require more precision

Low-level languages High-level languages
iachine-dependent Machine-Independent
< "
mMachine Third-generation Fourth-generation
Language languagea {C, Basic, languages (SQL,
C++, Java) ABAP,
— ColdFuslon)

® [E462 La::u"‘mz ot

Programming Languages (cont.)

« Compiled vs. Interpreted

O

O

® |[E462

Another way to classify programming languages

Compiled language: code is translated into a machine-
readable form called an “executable” that can be run on
the hardware (e.g. C, C++, and COBOL)

Interpreted language: requires a “runtime program” to be
iInstalled in order to execute; this program then interprets
the program code line by line and runs it; generally easier
to work with but slower (e.g. BASIC, PHP, PERL, and Python)

Web languages (HTML and Javascript) also considered
iInterpreted because they require a browser in order to run

Note, Java programming language: interesting exception
to this classification (hybrid of the two)

®28

Programming Languages (cont.)

 Procedural vs. Object-Oriented
0 Procedural programming language: designed to allow a

® |[E462

programmer to define a specific starting point for the
program and then execute sequentially (include all early
programming languages)

Object-oriented programming language: uses interactive
and graphical user interfaces (GUI) to allow the user to
define the flow of the program

« programmer defines “objects” that can take certain
actions based on input from the user

Procedural program focuses on sequence of activities to
be performed, while object-oriented program focuses on
the different items being manipulated

@29

Programming Languages (cont.)

 Procedural vs. Object-Oriented (cont.)
o Example of object-oriented code (human resource system)

o0 object (“EMPLOYEE”) is created in program to retrieve or
set data regarding an employee

0 Every object has properties: descriptive fields associated
with the object (“Name”, “Employee number”, “Birthdate”
and “Date of hire”)

o Obiject also has methods Object: EMPLOYEE
which can take actions related N
: _ ame
to the object: Employee number
“ComputePay()”: money owed to person | Birthdate
“ListEmployees()”: who works under Date of hire

that employee
ComputePay()

ListEmployees()

® |[E462

Programming Languages (cont.)

 Programming Tools

o Traditional Tools: text editor, checking syntax, code
compiler

o Additional tools:
* Integrated Development Environment (IDE)

« Computer-Aided Software-Engineering (CASE) tools

® |[E462 e31

Programming Languages (cont.)

 Programming Tools (cont.)
Integrated Development Environment (IDE) provides:

O

® |[E462

an editor for writing the program that will color-code or
nighlight keywords from the programming language

help system
compiler/interpreter
debugging tool (to resolve problems)

check-in/check-out mechanism (so that more than one
programmer can work on code)

e.g. Microsoft Visual Studio: IDE for Visual C++, Visual BASIC

®32

Programming Languages (cont.)

 Programming Tools (cont.)
Integrated Development Environment (IDE) example

Session Project Run Navigation

(&) Build [¥] Execute [Debug

Projects o4 Q

B2 B & @ @

[bazaar
[classbrowser
[codeutils
[contextbrowser
[cvs
[documentswitcher
[documentview
[execute
[kdevexecute
2 CMakeLists.txt
h debugh
* executeplugin.cpp
executeplugin.h
iexecuteplugin.h
_ kdevexecute json
’_ Messages.sh
¢’ nativeappconfig.cpp
h nativeappconfig.h
4 nativeappconfig.ui
i)
h

& Documents ¥ Classes

§ v v

[Projects

v o o0,

** nativeappjob.cpp
nativeappjob.h
" projecttargetscompb...
h projecttargetscomb...
> [F executescript
> [externalscript
> [filemanager
> [filetemplates
» [genericprojectmanager
> A git
> [grepview
> [konsole
> [E openwith

Build Sequence A

Name Path

[kdevplatf... kdevplatform

® |[E462

File Edit Tools View Bookmarks Code Window Settings Help

stopAll (2 Stop , | [J) New [B] save [} saveas [L, Commit.. | Quick

nativeappconfia.cpp €3
QListWidgetItem* item = new QListWidgetItem{icon, targetDependencv-btextfJ, dependencies);
item->setDatal Qt::UserRole, targetDependency->itemPath());
targetDependency->setText(QlatinlString(""));
addDependency->setEnabled(false)
dependencies-»selectionModel()->clearSelection();
Lth >satSe\e(tedttrue 3

endencies n|

woid NativeAppConfigPage::selectItemDialog()
v
- if(targetDependency->selectTtenDialog(}) {
addDep(];
}

void NativepppConfigPage::removeDepl()
v{

QList<QlistWidgetTtem#> list = dependencies-»selectedItems();
if(1list.isEmpty())
{

v
Q_ASSERT(Lis == 1
int row = dependencies->row(.atfe));
delete dependencies->takeItem{ row };
dependencies-»selectionModel()->select(dependencies-»model()->index{ row - 1, 0, QModelIndex()), QItemSelectionModel::ClearAr
}
}

void NativeAppConfigPage::saveToConfiguration(KConfigGroup cfg, KDevelop::TProject* project) const
v {

Q_UNUSED(project };
cfg.writeEntry(ExecutePlugi
cfg.writeEntry(ExecutePlugi
cfg.writeEntry(ExecutePlugi
cfg.writeEntry{ ExecutePlugi
cfg.writeEntry(ExecutePlugin:
cfg.writeEntry(ExecutePlugi
cfg.writeEntry(
cfg.writeEntryl
cfg.writeEntryl(£xecutePLqu
Qvariar t]

for(int

isExecutableEntry, executableRadio- >13Che(kedf] 1
executableEntry, executablePath->url(
projectTargetEntry, projectTarget- ‘—\'(urrentltemPathll ¥i
argumentsEntry, arguments->text{) J;

workingDirEntry, workingDirectory-=url());
environmentGroupEntry, environment- >curren‘tProf11etl 1
useTerminalEntry, runInTerminal->isChecked(
terminalEntry, terminal->currentText(} };
sdependencyhctionEntry, dependencyAction- >1temDataE dependencyhction->currentIndex()).toStringl));

< dependencies->count(); i++)
deps << dependencies->item(i)->datal(Qt::UserRole);

¥
cfg.writeEntry{ ExecutePlugin::dependencyEntry, KDevelop::qvariantToStringl QVariant(deps)));

String MativeAppConfigPage::title() const

~a

return il8n("Configure Native Application"};

°d .

(D) showImports Scope: Current Document Bl |
Problem Source File Line Colur
[i TODO: Make sure to auto-add the executable target to the dependencies when its used. To-do nativeappconfig.cpp 68 3

[{ TODO: we probably want to flexibilize, but at least we won't be accepting wrong values anymore To-do nativeappconfig.cpp 415 5

®33

Programming Languages (cont.)

 Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools:

o Allows a designer to develop software with little or no
programming

o Writes the code for the designer

o Goalis to generate quality code based on input created
by the designer

® |[E462 ® 34

Programming Languages (cont.)

 Programming Tools (cont.)
Computer-aided software-engineering (CASE) example:

A F Raticnal Rose RaalTime - externalCUsingolabassndThreac, rimdl - | Class Draqrann s Loghos! e ..'.

=

E=] Rl Bl

Wakt Brcdkse BEE]D Bept ot Tods

S5 i LS e T e

LS ETal |

=]

— =] =]

Nl fraalaec(lramr (B0 S amsEcs| B Do ok

B gal rodel
-8 Usa Case Viaw
- 2° Extarnal Pad Ulsage
= 2E Man
- % Copeula
== B EmernalThraad
- a Logical Wiewn
HEC ATC asses
-3 Stenderdlibrenes
E-42" Have il all warks
= IR
B AThead
E-% Top
-8 Camponer Wiew
EHEPg AT O omponants
(=&l Main
{E] Stenderdlibrmnes
-0 TheZCapsuleE=s
-3 Deplovment viaw
i~ Py klmin
El [P windaws
-l ThaCl=psulaExalnstnce

RS U S

® |[E462

T s I e . S

hple of using © Extemnl par ta
bl o cogoule vsing o celback

femampleruns onwind2 only (because i
wwnlZ cels o ceale & himad)

iram Stand=rdLibreries

ffrom SiendardLbranies

ffrom Smndard_ibranias

crCapsule»r
This capsule siats th Top
e este=rnal fhiread, and
B e ocaunt =0
¢ =demal: CHoOd=Emisl
! “tecludas
The extarnal prolocol praades = . \.;:\l
mechaniEm signal sn evantio s i
cap=ule] AThread
-------------- LTI Thiz claea uilit: cams
Nig & new BrgaiR TS e rice el : XetitheErdemal For : R0 -FosaFAT coda. k
wharmial : 'Eachinijuli R non aa Codle, Ko
pravicias en AR hel s nonRoze : e | - | usEs the exemal &F1 L
|n|:|l.!|:|=-= "‘h:I'E'ﬂJ'E'I:I capsds
i IS & o L1
- e *tseiEaemeiFo]
oo et
ftProtoca e Y e F. !
CExdeminl e - H "-_l d
iom PTEC=ecas) induties inciidas e
o mweent [oid) S ' Y
etdio E=5le]] windows

®35

Programming Languages (cont.)

 Programming Tools (cont.)
Computer-aided software-engineering (CASE) Tools (cont.):
o Diagramming tools enable graphical representation

0 e.g. Unifled Modeling Language (UML): general-purpose,
developmental, modeling language used to visualize the
design of a system

o Computer displays and report generators help prototype
how systems “look and feel”

o Code generators enable automatic generation of
programs and database code directly from design
documents, diagrams, forms, and reports

® |[E462 ® 36

Sources

 Modern Systems Analysis and Design. Joseph S.
Valacich and Joey F. George. Pearson. Eighth Ed.
2017. Chapter 1: The Systems Development
Environment.

e Information Systems for Business and Beyond. David
T. Bourgeois. The Saylor Academy. 2014. Chapter
10: Information Systems Development.

® |[E462 ©® 37

