Multiple Choice

1. The total number of atoms present in 0.554 mol of $\left[\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PH}_{3}\right)_{2}\right]$ compound is:
A) $\quad 7.0 \times 10^{25}$
B) $\quad 7.0 \times 10^{24}$
D
C) $\quad 6.0 \times 10^{24}$
D) $\quad 5.0 \times 10^{24}$
2. The number of moles contained in 22.2 g of pyridine $" \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ " is:
B
A) 0.32
B) 0.28
C) 0.25
D) 0.22
3. The mass (in gram) of 4.4×10^{22} molecule of table sugar " $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ " is:
(C)
A) $\quad 20.0$
B) $\quad 22.0$
C) $\quad 25.0$
D) $\quad 27.0$
4. The percentage by mass of platinum " Pt " in $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is:
(D)
A) 74%
B) 72%
C) 69%
D) 65%
5. The empirical formula of the compound that is $62.1 \% \mathrm{C}, 10.4 \% \mathrm{H}$ and $27.5 \% \mathrm{O}$ by mass, is:
(A)
A) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
B) $\quad \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{O}$
C) $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}$
D) $\quad \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
6. Lithium " Li " metal and nitrogen " N_{2} " gas react to give lithium nitride " $\mathrm{Li}_{3} \mathrm{~N}$ " according to:

$$
6 \mathrm{Li}+\mathrm{N}_{2} \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}
$$

In a particular experiment 5.2 g of Li was allowed to react with excess N_{2} and $7.4 \mathrm{~g} \mathrm{Li}_{3} \mathrm{~N}$ were produced. The percentage yield of $\mathrm{Li}_{3} \mathrm{~N}$ is:
(B)
B) 85%
C) 87%
D) 92%
7. An element combines with oxygen to form an oxide with the formula $\mathrm{X}_{2} \mathrm{O}_{5}$. If 30.6 g of this element combines with 24.0 g of oxygen, therefore the atomic mass of the element "in a.m.u." is:
(D) A
176
B) 142
C) 88
D) 51
8. Three separate aqueous solutions of lithium iodide "LiI", sodium iodide "NaI" and potassium iodide "KI", each solution contains 60.0 g of the solute in one liter of solution, therefore the molarity of:
A) the three solutions is the same.
B) LiI solution is the highest.
C) $\quad \mathrm{NaI}$ solution is the highest.
D) KI solution is the highest.
9. The volume (in mL) of water that must be added to 100 mL of a stock solution of 6.0 M HNO_{3} in order to prepare $0.8 \mathrm{M} \mathrm{HNO}_{3}$ by dilution is:
(C)
A) 750
B) 700
C) 650
D) 600
10. The molality " m " of an aqueous solution that is 25% by mass phosphoric acid $" \mathrm{H}_{3} \mathrm{PO}_{4}$ " is:

A) 3.4
B) 3.1
C) 2.9
D) 2.7
11. The standard temperature and pressure (STP) in the context of gases, refers to:
A) a temperature of zero degree Kelvin " $\mathbf{0 . 0} \mathbf{K}$ " and a pressure of $\mathbf{1 . 0} \mathbf{~ a t m}$.
B) a temperature of zero degree Celsius " $\mathbf{0 . 0} \mathbf{0}^{\mathbf{C}}$ " and a pressure of $\mathbf{1 . 0} \mathbf{~ a t m}$.
(B) C) a temperature of $273^{\circ} \mathrm{C}$ and a pressure of $\mathbf{1 . 0} \mathbf{~ a t m}$.
D) a temperature of $\mathbf{2 7 3}{ }^{\mathbf{\circ}} \mathrm{C}$ and a pressure of $\mathbf{0 . 0} \mathbf{~ a t m}$.
12. A sample of a gas in a 3.0 L fixed volume closed container at a temperature of $27.0^{\circ} \mathrm{C}$ and a pressure of 620 torr. If the gas is heated to $147.0^{\circ} \mathrm{C}$, the pressure of the gas (in torr) will be:
(A) A
A) 868
B) 914
C) 949
D) 1015
13. The molar mass (in $\mathrm{g} \cdot \mathrm{mol}^{-1}$) of a gas that 0.9848 g of it occupies 1.5 L at a temperature of $22.5^{\circ} \mathrm{C}$ and a pressure of 356 mmHg is:
(B) A) 44
B) 34
C) 32
D) 28
14. At a temperature of $25^{\circ} \mathrm{C}$ and a pressure of 1.0 atm , the ratio of the speed of effusion of CO_{2} gas to that of SO_{2} gas is:
(C) A) 1.6
1.6 B)
B) $\quad 1.4$
C) 1.2
D) $\quad 1.1$
15. Zinc " Zn " reacts with aqueous sulfuric acid to give hydrogen $" \mathrm{H}_{2}$ " gas according to:

$$
\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathbf{H}_{2}
$$

In an experiment, 4.0 L of wet hydrogen is collected at a temperature of $27^{\circ} \mathrm{C}$ and a pressure of 748 torr. Knowing that the vapor pressure of water at $27^{\circ} \mathrm{C}$ is 26.74 torr, therefore, the mass (in g) of Zn that has been consumed is:
(D)
A) 40
B) 30
C) 20
D) 10

