King Saud University, College of Science, Department of Mathematics Math-280 (Introduction to Real Analysis) Final Exam [Time: 3 Hours]/ 1st Semester, 1436–1437 H.

Exercise 1 [3+3+3=9 Marks]:

- 1. Determine the following infimum: $\inf \left\{ z = 2^x + 2^{\frac{1}{x}}, x > 0 \right\}$.
- 2. Find the limit of the sequence: $\lim_{n\to\infty} \sqrt[n]{a^n+b^n}$, where $a, b\geq 0$.
- 3. Decide whether the following series is convergent or divergent: $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$

Exercise 2 [2+1+3+3=9 Marks]:

- 1. Using the $\varepsilon \delta$ -definition of the limit, show that $\lim_{x \to a} f(x a) = \lim_{x \to 0} f(x)$.
- 2. Calculate the limit: $\lim_{x\to 1} \frac{\sin(x^2-1)}{x-1}$.
- 3. Let f be continuous on [0,1], and suppose that f(0)=f(1). Show that there is a point $c \in [0,\frac{1}{2}]$ such that $f(c)=f\left(c+\frac{1}{2}\right)$.
- 4. Find the extrema of $g(x) = 3x^4 8x^3 + 6x^2$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$

Exercise 3 [4+2+4=10 Marks]:

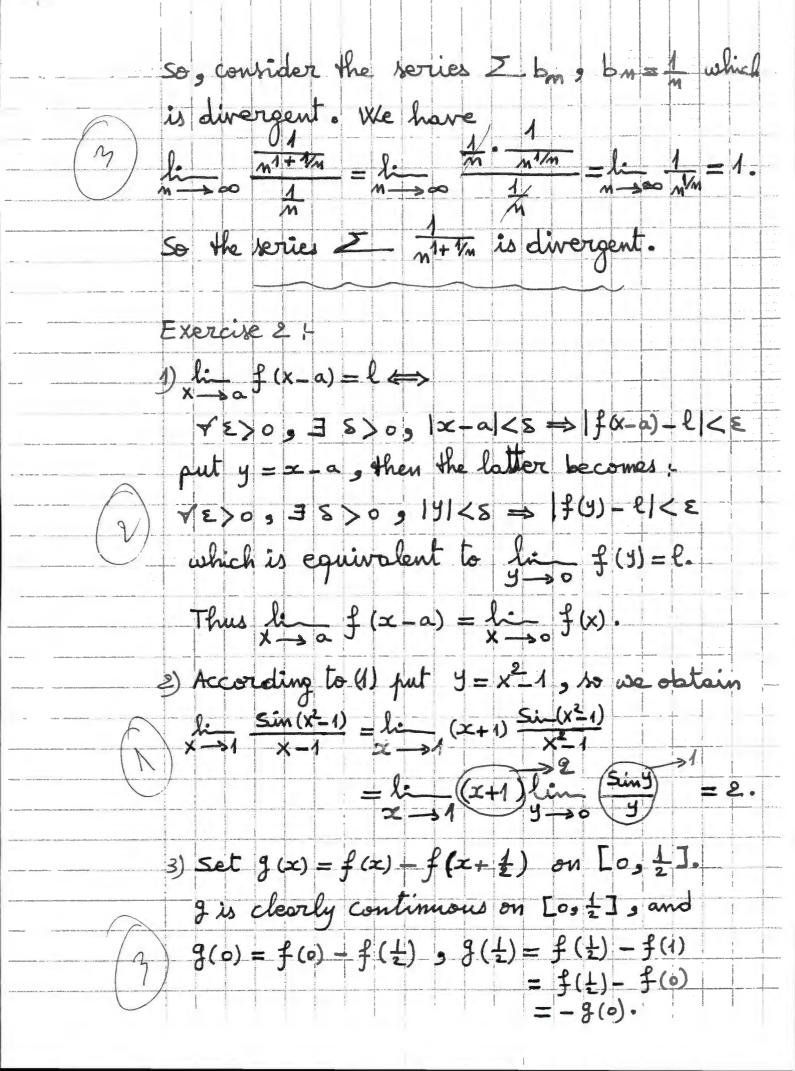
- 1. Show that if $f \in \mathcal{R}(0,1)$, then $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f(x)dx$.
- 2. Use (1) to calculate the limit: $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{k}{n^2 + k^2}$.
- 3. Test the convergence of the improper integral: $I = \int_0^\infty \frac{4x}{1+x^6} dx$.

Exercise 4 [(4)+(3+3+2)=12 Marks]:

- 1. Study the uniform convergence of the sequence of functions: $f_n(x) = nx^n(1-x), n \in \mathbb{N}$, on $\mathcal{D} = [0, 1]$.
- 2. Let $f_n: [1,2] \longrightarrow \mathbb{R}$, be such that $f_n(x) = \frac{x}{(1+x)^n}$, $n \in \mathbb{N}$.
 - (a) Show that $\sum_{n=1}^{\infty} f_n(x)$ is convergent $\forall x \in [1,2]$.
 - (b) Show that this convergence is uniform.
 - (c) Verify the identity: $\int_1^2 \left(\sum_{n=1}^\infty f_n(x)\right) dx = \sum_{n=1}^\infty \int_1^2 f_n(x) dx.$

..... Good Luck

Typical unswers to the final exam problems, Math 280 First semester 4436/1437H) 2015/2016 G. 1) For any a, b) 0, we have a+b > Vab . So put a = 2× and b = 2× => 2x+2x > 2 \2x2x = 2 \2x+x > 2 \2x=4 Since the minimum value of X+ x on (0,00) is attained at X=1 and equals 2; $(x + \frac{1}{x})^{2} = 1 - \frac{1}{x^{2}} = 0 \Rightarrow x = \pm 1$ $(x+\frac{1}{x})^{\parallel} = \frac{2}{x3}$ whis is > 0 for x=1 so it is a local min. Thus inf $\{z = 2^x + 2^x, x > 0\} = 4$ (with equality if and only if x = 1). 2) Suppose, without loss of generality, that a b. So $\sqrt{a^n+b^n} = a \sqrt{1+(a)^n} \rightarrow a as m \rightarrow \infty$ So li Van+bn = max{a,b}. 3) We we the limit comparison test:



Thus o lies between 3 (0) and 9 (1) = - 3 (0). By the intermediate value theorem there is a $C \in [0, \frac{1}{2}]$ such that g(c) = 0. i.e. $f(c) - f(c+\frac{1}{2}) = 0$ or $f(c) = f(c+\frac{1}{2})$. 4) $g(x) = 12 \times ^{3} - 24 \times ^{2} + 12 \times = 0$ $\Rightarrow 12 \times (X^2 - 2 \times + 1) = 0$ \Rightarrow 12 x (x-1)2=0 \Rightarrow X=0 8L x=1. Thus the critical points are [-1,0,1] as 1 \$ [-29 =]. $g(-\frac{1}{2}) = \frac{4^3}{16}$, g(0) = 0, $g(\frac{1}{2}) = \frac{11}{16}$ \Rightarrow g(0) = 0 is the minimum, and $g(-\frac{1}{2}) = \frac{43}{16}$ is the maximum of gon [-!, 1]. Exercise 3 5 1) If $f \in R(0,1)$, let us choose a uniform partition Pm such that 1 1 then xo x1 x2 xx xm1 xm $x_{k} = \frac{k}{m}$, $x_{k+1} - x_{k} = \frac{1}{m}$, $w_{k+1} = x_{k+1} = \frac{k+1}{m}$ $\Rightarrow S(f, f_n) = \sum_{k=1}^{\infty} f(\omega_k) \Delta \times_k = \sum_{k=0}^{n-1} f(\frac{k+1}{n}) \cdot \frac{1}{n}$ $-\frac{5}{k} f(\frac{k}{m}) \cdot \frac{1}{m} \circ (\text{put } i = k+1 \text{ and then } network \text{ back to } k).$ passing to the limit in the latter as $m \to \infty$

we obtain

$$\lim_{n \to \infty} \frac{1}{n} = \int_{-1}^{\infty} \frac{1}{n} \int_{-1}^{\infty} \frac{1}{n$$

1) If x = 0 or x = 1 , we have f (x) = 0, YMEN. If 0<x<1, then mxm(1-x) -> 0 as m->00. So the pointwise limit is 0, i.e. $f_{m}(x) = 0$ on the other hand, for any n > 2, we have $f_{M}(x) = M \times M^{-1} (M - (M+1)x)$ $So f(x) = 0 \implies x = 0 \text{ or } x = \frac{M}{M+1}$ Thus Suf [1 (x)-0) = [0,1] = = = (M/n+1). as f(0) = f(1) = 0 , while $f_n(\frac{n}{n+1}) > 0$ $n \in \mathbb{N}$. But $\lim_{n\to\infty} f_n\left(\frac{n}{n+1}\right) = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^{n+1} = \frac{1}{e} + 0$ So the convergence of (fn) to o is not uniform. a) If x ∈ [1,2], then |1+x|>2>1, and there 1 1 < 1, nowe have In particular \(\int \frac{1}{m=1} \, \frac{1}{m} (\times) \) is convergent \(\frac{1}{\times} \sigma \simma \sigma \sigma \sigma \sigma \si b) Since 1 ≤ x ≤ 2, we have 1+x > 2 $\Rightarrow \frac{1}{(1+x)^{M}} \leqslant \frac{1}{2^{M}} \Rightarrow \frac{x}{(1+x)^{M}} \leqslant \frac{x}{2^{M}} \leqslant \frac{2}{2^{M}} = \frac{1}{2^{M-1}}$

So take $M_m = \frac{1}{2^{m-1}}$, whence $|f_m(x)| = \frac{x}{(1+x)^m}| \leq \frac{1}{2^{m-1}}$ Since $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ is convergent, then = 1 (1+x) n is uniformly convergent by weintross. c) The uniform convergence allows us to interchange the integral sign and the infinité sun , so $\int_{1}^{\infty} \left(\int_{M=1}^{\infty} f_{M}(x) \right) dx = \int_{M=1}^{\infty} \int_{1}^{\infty} f_{M}(x) dx = 1.$