King Saud University: Summer Semester Maximum Marks = 40	1400-40 **	MaTH-254 Examination Time: 180 mins.
Name of the Student:—	I.D.	No. ————
Name of the Teacher:—	Sect	ion No. ————
	s total number of D	ages are Five (5).

Note: Check the total number of pages are Five (5). (15 Multiple choice questions and Two (2) Full questions)

The Answer Tables for Q.1 to Q.15: Marks: 2 for each one $(2 \times 15 = 30)$

Ps.: Mark {a, b, c or d} for the correct answer in the box.

	Ps. : Mark {a, b, c or d} for the correct answer in the box.														
	Q. No.	1	2	3	4	5	6	7	8	9	10	11	12		
1															
	a,b,c,d														

Quest. No.	Marks
Q. 1 to Q. 15	
Q. 16	
Q. 17	
Total	

find the first approximation is:									
(a) $x_1 = 0$ (b) $x_1 = -1$ (c) $x_1 = 1$ (d) $x_1 = -2$									
Question 3: The order of multiplicity of the root $\alpha = 1$ of the equation $x^4 - x^3 - 3x^2 + 5x - 2 = 0$ is:									
(a) 2 (b) 1 (c) 4 (d) 3									
Question 4: The next iterative value of the root of $x^2 - 4 = 0$ using secant method, if the initial guesses are 3 and 4, is:									
(a) 2.5000 (b) 2.2857 (c) 5.5000 (d) 5.7143									
Question 5: In the Gauss elimination with partial pivoting method for solving a system of linear algebraic equations, triangularization leads to a matrix:									
(a) Upper triangular (b) Lower triangular (c) Diagonal (d) Singular									
Question 6: If $\hat{x} = [0.5, 0.0]^T$ is an approximate solution for the system $2x - y = 1$, $x + y = 2$, then the l_{∞} -norm of the corresponding residual vector is:									
(a) 0.25 (b) 0.5 (c) 2.5 (d) 1.5									
Question 7: The Lagrange polynomial that passes through the data points $(15, 24), (18, 37), (22, 25)$ is $p_2(x) = 24L_0(x) + 37L_1(x) + 25L_2(x)$. The value of $L_1(16)$ is:									
(a) 0.071430 (b) 0.57143 (c) 0.5000 (d) 4.3333									
Question 8: The Newtons divided difference second order polynomial for the data points $(15,24),(18,37),(22,25)$ is $p_2(x)=b_0+b_1(x-15)+b_2(x-15)(x-18)$. The value of b_1 is:									
(a) 1.0480 (b) 4.3333 (c) 0.14333 (d) 24.000									
Question 9: Using data points: $(0,-2)$, $(0.1,-1)$, $(0.15,1)$, $(0.2,2)$, $(0.3,3)$, if $\max_{0 \le x \le 0.3} f^{(5)}(x) = 1$, then the error bound in approximating $f(0.25)$ by using a fourth degree interpolating polynomial is bounded by:									
(a) 0.78×10^{-5} (b) 0.78×10^{-8} (c) 0.78×10^{-6} (d) 0.78×10^{-9}									
Question 10: When using the two-point forward formula with $h = 0.2$ for approximating the value of $f'(1)$, where $f(x) = \ln(x+1)$, we have the computed approximation (accurate to 4 decimal places):									
(a) 0.4666 (b) 0.4966 (c) 0.4766 (d) 0.4866									
Scanned by CamScanner									

Question 1: The number of bisections required to solve the equation $x^3 + x = 1$ in [0, 1] accurate to within 10^{-3} is:

Question 2: Let $x^2 - e^x = 0$. Use Newton's Method and the initial approximation $x_0 = 0$ to

(c) 9

(b) 8

(a) 10

(d) 11

			(a.d. 1) (0.15.1°) (0.2,2),(0	.3,3), then the worst					
Question	11: Using data ation of $f''(0.15)$	points: $(0, -2)$, (using 3-point differ	(0.1, -1), (0.13, 1) erence formula is:	; (0.2, -), (.3,3), then the worst					
		(1) 00 000	(c) 33.3	33	(d) -44.444					
Question	12: The value of	of $\int_{0.2}^{2.2} xe^x \ dx$ by	the using simple	trapezoidal	rule is most nearly is:					
	(a) 20.099	(b) 11.807	(c) 11.07	2	(d) 211223					
Question 13: If $f(0) = 3$, $f(1) = \frac{\alpha}{2}$, $f(2) = \alpha$, and the Simpson's rule for $\int_0^2 f(x) dx$ gives 2, then the value of α is:										
	(a) 2.0	(b) 0.5	` '	(d) 3.0						
Question	14: Given init	ial-value problem Euler's method	y' = x + y, y with $n = 1$ is:	(0) = 1, th	e approximate value of					
	(a) 1.2	` '	(c) 1.02							
Question method of	15: Given y' order 2 when n	$-\frac{1}{3y}=0, y(0)=$	= 1, the approx	kimate valu	e of $y(1)$ using Taylor's					
	(a) $\frac{23}{18}$		(c) $\frac{19}{18}$	(d) $\frac{17}{18}$						

Question 16: Find the values of a, b and c such that the iterative scheme

$$x_{n+1} = ax_n + \frac{bN}{x_n^2} + \frac{cN^2}{x_n^5}, \qquad n \ge 0,$$

converges at least cubically to $\alpha = N^{\frac{1}{3}}$. Use this scheme to find second approximation of $(27)^{\frac{1}{3}}$ when $x_0 = 2.8$.

Question 17: Consider the following nonhomogeneous linear system $A\mathbf{x} = \mathbf{b}$, where

er the follows:
$$A = \begin{pmatrix} 5 & 0 & -1 \\ -1 & 3 & 0 \\ 0 & -1 & 4 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}.$$

Find the matrix forms of Jacobi and Gauss-Seidel iterative methods. Show that Gauss-Seidel iterative method converges faster than Jacobi iterative method for the given system. [5 points]