King Saud University: Mathematics Department MaTH-254 Summer Semester 1439-40 H Final Examination Maximum Marks = 40 Time: 180 mins.															
Name of the Student:					I.D. No										
Name of the Teacher:						Section No.							_		
Note: Check the total number of pages are Five (5). (15 Multiple choice questions and Two (2) Full questions) The Answer Tables for Q.1 to Q.15: Marks: 2 for each one $(2 \times 15 = 30)$															
Q. No.	1	P	s. : M	ark {a,	b, c o	r d} for	the cor	rect ar	swer i	n the b	oox.	12	13	14	15
a,b,c,d															
Quest.			Ma	nrks											
Q.	16														
Q.	17														

Total

$rac{\mathbf{Questi}}{\mathrm{accurat}}$	$\frac{\text{ton 1}}{\text{e to within } 10^{-3}}$ is	er of bisections res:	equired to so	olve the	equation x^3	+x = 1 in [0,1]		
	(a) 10	(b) 8	c) 9	(d) 11				
	on 2: Let $x^2 - e^x$ effrst approximation		n's Method a	nd the ir	nitial approxi	mation $x_0 = 0$ to		
	(a) $x_1 = 0$	(b) $x_1 = -1$	(c) $x_1 = 1$	(d)	$x_1 = -2$			
Questic	on 3: The order o	f multiplicity of th	ne root $\alpha = 1$	of the ec	x^4-x^3	$^{3} - 3x^{2} + 5x - 2 = 0$		
	(a) 2	(b) 1 (c) 4	(d) 3				
	on 4: The next in tesses are 3 and 4		the root of	$x^2 - 4 =$	0 using sec	ant method, if the		
	(a) 2.5000	(b) 2.2857	(c) 5.5000	(d)	5.7143			
Question 5: In the Gauss elimination with partial pivoting method for solving a system of linear algebraic equations, triangularization leads to a matrix:								
	(a) Upper trian	igular (b) L	ower triang	ılar	(c) Diagona	d (d) Singular		
Question 6: If $\hat{x} = [0.5, 0.0]^T$ is an approximate solution for the system $2x - y = 1$, $x + y = 2$, then the l_{∞} -norm of the corresponding residual vector is:								
	(a) 0.25	(b) 0.5	(c) 2.5		(d) 1.5			
Question 7: The Lagrange polynomial that passes through the data points $(15, 24), (18, 37), (22, 25)$ is $p_2(x) = 24L_0(x) + 37L_1(x) + 25L_2(x)$. The value of $L_1(16)$ is:								
	(a) 0.071430	(b) 0.57143	(c) 0.50	00	(d) 4.3333			
$\frac{\mathbf{Question}}{(15,24),(15,24)}$	18: The Newto	ons divided difference $p_2(x) = b_0 + b_1$	erence second $(x-15)+6$	d order $b_2(x-1)$	polynomial $5(x-18)$.	for the data points. The value of b_1 is:		
	(a) 1.0480	(b) 4.3333	(c	0.1433	33	(d) 24.000		
Question 9: Using data points: $(0,-2)$, $(0.1,-1)$, $(0.15,1)$, $(0.2,2)$, $(0.3,3)$, if $\max_{0 \le x \le 0.3} f^{(5)}(x) = 1$, then the error bound in approximating $f(0.25)$ by using a fourth degree interpolating polynomial is bounded by:								
	(a) 0.78×10^{-5}	(b) 0.78	$\times 10^{-8}$	(c)	0.78×10^{-6}	(d) 0.78×10^{-9}		
Question 10: When using the two-point forward formula with $h = 0.2$ for approximating the value of $f'(1)$, where $f(x) = \ln(x+1)$, we have the computed approximation (accurate to 4 decimal places):								
((a) 0.4666	(b) 0.4966	(c) 0.470	36	(d) 0.4866		

	(a) 20.099	(b) 11.807	(c) 11.67	2 (d) 24.119
Question 2, then the	13: If $f(0) = 3$ are value of α is:	$3, f(1) = \frac{\alpha}{2}, f(2)$	$= \alpha$, and the Sim	npson's rule fo	or $\int_0^2 f(x) dx$ gives
	(a) 2.0	(b) 0.5	(c) 1.0	(d) 3.0	
Question	Given init $y(0.1)$ using	ial-value probler g Euler's method	n y' = x + y, y with $n = 1$ is:	(0) = 1, the	approximate value of
	(a) 1.2	(b) 1.01	(c) 1.02	(d) 1.1	
Question method of	15: Given y' order 2 when n	$-\frac{1}{3y} = 0, \ y(0)$ = 1 is:	= 1, the approx	timate value	of $y(1)$ using Taylor's
	(a) $\frac{23}{18}$	(b) $\frac{25}{18}$	(c) $\frac{19}{18}$	(d) $\frac{17}{18}$	

Question 11: Using data points: (0,-2), (0.1,-1), (0.15,1), (0.2,2), (0.3,3), then the worst approximation of f''(0.15) using 3-point difference formula is:

Question 12: The value of $\int_{0.2}^{2.2} xe^x dx$ by the using simple trapezoidal rule is most nearly is:

(c) 33.333

(a) 44.444 (b) -33.333

(d) -44.444

Question 16: Find the values of a, b and c such that the iterative scheme

$$x_{n+1} = ax_n + \frac{bN}{x_n^2} + \frac{cN^2}{x_n^5}, \qquad n \ge 0,$$

converges at least cubically to $\alpha = N^{\frac{1}{3}}$. Use this scheme to find second approximation of $(27)^{\frac{1}{3}}$ when $x_0 = 2.8$.

Question 17: Consider the following nonhomogeneous linear system Ax = b, where

$$A = \begin{pmatrix} 5 & 0 & -1 \\ -1 & 3 & 0 \\ 0 & -1 & 4 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}.$$

Find the matrix forms of Jacobi and Gauss-Seidel iterative methods. Show that Gauss-Seidel iterative method converges faster than Jacobi iterative method for the given system. [5 points]