King Saud University:

Math. Dept.

M-254

Final Exam.

Summer Semester (1433-1434 H)

Time: 180 min.

Max. Marks: 40

Question 1:

(5+4+5+4+4)

(a) Show that Newton's formula for the approximation of the cube root of 3 is

$$x_{n+1} = \frac{1}{3} \left(2x_n + \frac{3}{x_n^2} \right), \quad n \ge 0.$$

Find the approximation of the cube root of 3 using $x_0 = 1.5$ correct to 3 decimal places.

- (b) Find the order of convergence of the iteration $x_{n+1} = \frac{x_n^2 + b}{2x_n}$, $n \ge 0$ as it converges to \sqrt{b} , b > 0.
- (c) The equation $x^3 5x^2 + 4x 3 = 0$ has one real root near x = 4 which is to be computed by the iteration (for $k \neq 0$)

$$x_{n+1} = \frac{3 + (k-4)x_n + 5x_n^2 - x_n^3}{k}$$
, k integer, $x_0 = 4$, $n \ge 0$.

Determine which value of k will give the faster convergence? Using this value of k, find first approximation.

(d) Rearrange the following linear system

$$x_1 + x_2 - 4x_3 = 4$$

 $-5x_1 + 2x_2 + x_3 = -3$
 $x_1 - 10x_2 + x_3 = 27$

such that the convergence of the Jacobi method is guaranteed. Use the Jacobi method to find the first two iterations, using the initial approximation $x^{(0)} = [-0.5, -2.5, -1.5]^T$. Compute an error bound for the approximation.

(e) Find the linear Lagrange polynomial passes through the points (0, f(0)) and $(\pi/2, f(\pi/2))$ to approximate the function $f(x) = 3\sin x$. Also, find a bound for the error in the linear interpolation of f(x).

Question 2: (4+5+5+4)

(a) If $f(x) = \ln(x+1)$, then find the value of the divided difference f[1,0,0,1].

Given the table of values

- (b) Use the table to find the approximate value of the f'(1.8) by the best three point formula.
- (c) Use the table to compute the approximation of the integral $\int_{0.6}^{3} (x^2 + 1) f(x) dx$ using the best integration rule.
- (d) Use Taylor's method of order two to approximate y(1.8) for the initial value problem

$$\frac{y'}{x} - y = 0$$
, $y(0.6) = 1.36$, $n = 2$.