4.5 Dimension

THEOREM 4.5.1 All bases for a finite-dimensional vector space have the same number of vectors.

DEFINITION 1 The *dimension* of a finite-dimensional vector space V is denoted by $\dim(V)$ and is defined to be the number of vectors in a basis for V. In addition, the zero vector space is defined to have dimension zero.

EXAMPLE 1 Dimensions of Some Familiar Vector Spaces

```
\dim(R^n) = n [The standard basis has n vectors.] 
 \dim(P_n) = n+1 [The standard basis has n+1 vectors.] 
 \dim(M_{mn}) = mn [The standard basis has mn vectors.]
```

L14.notebook

EXAMPLE 2 Dimension of Span(S)

If $S = \{v_1, v_2, \dots, v_r\}$ then every vector in span(S) is expressible as a linear combination of the vectors in S. Thus, if the vectors in S are *linearly independent*, they automatically form a basis for span(S), from which we can conclude that

$$\dim[\operatorname{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_r\}] = r$$

In words, the dimension of the space spanned by a linearly independent set of vectors is equal to the number of vectors in that set.

EXAMPLE 3 Dimension of a Solution Space

Find a basis for and the dimension of the solution space of the homogeneous system

$$x_1 + 3x_2 - 2x_3 + 2x_5 = 0$$

$$2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = 0$$

$$5x_3 + 10x_4 + 15x_6 = 0$$

$$2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 0$$

Solution In Example 6 of Section 1.2 we found the solution of this system to be

$$x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 0$

which can be written in vector form as

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (-3r - 4s - 2t, r, -2s, s, t, 0)$$

or, alternatively, as

$$(x_1, x_2, x_3, x_4, x_5, x_6) = r(-3, 1, 0, 0, 0, 0) + s(-4, 0, -2, 1, 0, 0) + t(-2, 0, 0, 0, 1, 0)$$

This shows that the vectors

$$\mathbf{v}_1 = (-3, 1, 0, 0, 0, 0), \quad \mathbf{v}_2 = (-4, 0, -2, 1, 0, 0), \quad \mathbf{v}_3 = (-2, 0, 0, 0, 1, 0)$$

span the solution space. We leave it for you to check that these vectors are linearly independent by showing that none of them is a linear combination of the other two (but see the remark that follows). Thus, the solution space has dimension 3.

Remark It can be shown that for any homogeneous linear system, the method of the last example *always* produces a basis for the solution space of the system. We omit the formal proof.

THEOREM 4.5.3 Plus/Minus Theorem

Let S be a nonempty set of vectors in a vector space V.

- (a) If S is a linearly independent set, and if v is a vector in V that is outside of span(S), then the set $S \cup \{v\}$ that results by inserting v into S is still linearly independent.
- (b) If v is a vector in S that is expressible as a linear combination of other vectors in S, and if $S \{v\}$ denotes the set obtained by removing v from S, then S and $S \{v\}$ span the same space; that is,

$$\operatorname{span}(S) = \operatorname{span}(S - \{v\})$$

EXAMPLE 4 Applying the Plus/Minus Theorem

Show that $\mathbf{p}_1 = 1 - x^2$, $\mathbf{p}_2 = 2 - x^2$, and $\mathbf{p}_3 = x^3$ are linearly independent vectors.

Solution The set $S = \{\mathbf{p}_1, \mathbf{p}_2\}$ is linearly independent since neither vector in S is a scalar multiple of the other. Since the vector \mathbf{p}_3 cannot be expressed as a linear combination of the vectors in S (why?), it can be adjoined to S to produce a linearly independent set $S \cup \{\mathbf{p}_3\} = \{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$.

In general, to show that a set of vectors $\{v_1, v_2, \ldots, v_n\}$ is a basis for a vector space V, one must show that the vectors are linearly independent and span V. However, if we happen to know that V has dimension n (so that $\{v_1, v_2, \ldots, v_n\}$ contains the right number of vectors for a basis), then it suffices to check *either* linear independence *or* spanning—the remaining condition will hold automatically. This is the content of the following theorem.

THEOREM 4.5.4 Let V be an n-dimensional vector space, and let S be a set in V with exactly n vectors. Then S is a basis for V if and only if S spans V or S is linearly independent.

To put it yet another way, suppose we have a set of vectors $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ in a subspace V. Then if any two of the following statements is true, the third must also be true:

- 1. *B* is linearly independent,
- 2. \mathcal{B} spans V, and
- 3. $\dim V = m$.

EXAMPLE 5 Bases by Inspection

- (a) Explain why the vectors $\mathbf{v}_1 = (-3, 7)$ and $\mathbf{v}_2 = (5, 5)$ form a basis for \mathbb{R}^2 .
- (b) Explain why the vectors $\mathbf{v}_1 = (2, 0, -1)$, $\mathbf{v}_2 = (4, 0, 7)$, and $\mathbf{v}_3 = (-1, 1, 4)$ form a basis for \mathbb{R}^3 .

Solution (a) Since neither vector is a scalar multiple of the other, the two vectors form a linearly independent set in the two-dimensional space R^2 , and hence they form a basis by Theorem 4.5.4.

Solution (b) The vectors \mathbf{v}_1 and \mathbf{v}_2 form a linearly independent set in the xz-plane (why?). The vector \mathbf{v}_3 is outside of the xz-plane, so the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is also linearly independent. Since R^3 is three-dimensional, Theorem 4.5.4 implies that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for the vector space R^3 .

- Every spanning set for a subspace is either a basis for that subspace or has a basis as a subset.
- Every linearly independent set in a subspace is either a basis for that subspace or can be extended to a basis for it.

THEOREM 4.5.5 Let S be a finite set of vectors in a finite-dimensional vector space V.

- (a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vectors from S.
- (b) If S is a linearly independent set that is not already a basis for V, then S can be enlarged to a basis for V by inserting appropriate vectors into S.

We conclude this section with a theorem that relates the dimension of a vector space to the dimensions of its subspaces.

THEOREM 4.5.6 *If W is a subspace of a finite-dimensional vector space V, then*:

- (a) W is finite-dimensional.
- (b) $\dim(W) \leq \dim(V)$.
- (c) W = V if and only if $\dim(W) = \dim(V)$.