FIRST SEMESTER FINAL EXAMINATION, 1439-1440(DEC. 2018) DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE KING SAUD UNIVERSITY

MATH: 240 FULL MARK: 40 TIME: 3 HOURS

[N. B.: All questions carry equal mark $5 \times 8 = 40$]

1. (a) Determine whether $\mathbf{v_1}=(1,2,6), \ \mathbf{v_2}=(3,4,1), \ \mathbf{v_3}=(4,3,1), \ \mathrm{and} \ \mathbf{v_4}=(3,3,1)$ span the vector space \Re^3 .

(b) Check whether the set of vectors $\mathbf{v_1} = (3, 8, 7, -3)$, $\mathbf{v_2} = (1, 5, 3, -1)$, $\mathbf{v_3} = (2, -1, 2, 6)$, and $\mathbf{v_4} = (1, 4, 0, 3)$ in \Re^4 is linearly dependent or independent.

2. Find a subset of the vectors $\mathbf{v_1} = (1, -1, 5, 2)$, $\mathbf{v_2} = (-2, 3, 1, 0)$, $\mathbf{v_3} = (4, -5, 9, 4)$, $\mathbf{v_4} = (0, \overline{4, 2, -3})$ and $\mathbf{v_5} = (-7, 18, 2, -8)$ that forms a basis for the space spanned by these vectors.

3. Find a basis for the orthogonal complement of the subspace of \Re^n spanned by the vectors $\mathbf{v_1} = (1, 4, 5, 2), \mathbf{v_2} = (2, 1, 3, 0), \mathbf{v_3} = (-1, 3, 2, 2).$

4. Assume that the vector space \Re^3 has the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectors $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$, where $\mathbf{u_1} = (1,0,0), \mathbf{u_2} = (3,7,-2), \mathbf{u_3} = (0,4,1)$ into an orthogonal basis $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$.

5. Find the characteristic equation of the following matrix and hence find eigenvalues of the matrix

$$A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

6. Find a matrix P that diagonalizes A, and determine $P^{-1}AP$.

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

7. Let T be multiplication by the matrix A, where

$$A = \begin{bmatrix} 1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{bmatrix}$$

Find the rank and nullity of T.

8. Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be defined by $T(x_1, x_2, x_3) = (x_1 - x_2, x_2 - x_1, x_1 - x_3)$. Find the matrix for T with respect to the basis $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, where $\mathbf{v}_1 = (1, 0, 1)$, $\mathbf{v}_2 = (0, 1, 1)$ and $\mathbf{v}_3 = (1, 1, 0)$. Hence verify that $[T]_B[\mathbf{x}]_B = [T(\mathbf{x})]_B$, for every vector $\mathbf{x} = (x_1, x_2, x_3)$ in \mathbb{R}^3 .