1st Semester 1437/1438

Final Exam

King Saud University

(without calculators)

Time allowed: 3 hours

College of Science

Wednesday 13-4-1438

240 Math

Math. Department

Q1: Suppose the reduced row echelon form (R. R. E. F.) of a matrix A is

$$R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Find The solution set of the system Ax = 0.
- (b) If the columns of A are v_1, v_2, v_3, v_4 . Find a basis of the column space of A from the set $\{v_1, v_2, v_3, v_4\}$. (4 marks)

Q2: Let V be a subspace of the vector space \mathbb{R}^3 spanned by the set S, where S={ v_1 =(3,-1,0), v_2 =(2, -3,4), v_3 =(-1, 5, 1), v_4 =(1,2,3), v_5 =(7,0,7)}. Find a subset of S that forms a basis of V. (4 marks)

Q3: Find a basis for each eigenspace of the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Moreover, find

the algebraic multiplicity and the geometric multiplicity of each eigenvalue of A and <u>deduce</u> if the matrix A is diagonalizable or not. (5 marks)

Q4: Let \mathbb{R}^4 be the Euclidean inner product space. Find the distance between the vectors $\underline{u}=(2,2,3,0)$ and $\underline{v}=(1,1,2,-1)$. Also, show that these two vectors are **not** orthogonal. (4 marks)

Q5: Assume that the vector space \mathbb{R}^3 has the Euclidean inner product. Apply the <u>Gram-Schmidt process</u> to transform the basis vectors (1,0,1), (0,1,2), (0,3,0) into an <u>orthonormal</u> basis. (6 marks)

Q6: Let $c \in \mathbb{R} - \{0\}$ and V be an inner product space, and let $T: V \to V$ be the map defined by T(v) = cv for all v in V. Show that:

(a) T is a linear operator.

(b) If $v_o \in \ker(T)$, then $v_o = 0$.

(5 marks)

Q7: Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator defined by the formula: $T(x_1, x_2, x_3) = (3x_1, -2x_1 - 4x_2, 3x_1 + 4x_2 - 2x_3)$. Find $[T]_{S,B}$ where S is the standard basis of \mathbb{R}^3 and $B=\{v_1=(1,1,1), v_2=(1,1,0), v_3=(1,0,0)\}$ is another basis of \mathbb{R}^3 .

Q8: Solve the following statements:

- (a) If $T:V\to W$ is a linear transformation, then prove that the range of T (R(T)) is a subspace of W. (2 marks)
- (b) If $T_1:U\to V$ and $T_2:V\to W$ are two linear transformations, then prove that $(T_2\circ T_1):U\to W$ is also a linear transformation. (2 marks)
- (c) If u and v are orthogonal vectors in an inner product space, then prove that: $||u+v||^2 = ||u||^2 + ||v||^2$ (2 marks)
- (d) Define a product on the vector space $\,M_{\,22}\,$ as follows:

for all $A, B \in M_{22} : \langle A, B \rangle = |AB|$

Show that this product is \underline{not} an inner product on M_{22} . (2 marks)