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Outline of the Course: 

Course code and number: STAT 223. 

Course name: Theory of Statistics 1. 

Credits: 3(2+1). 

Pre-requisite: STAT 215. 

Instructor: 

Dr. Samah Abdullah Alghamdi. 

Office: 346 – Building 5. 

E-mail : samalghamdi@ksu.edu.sa 

Web Site: http://fac.ksu.edu.sa/samalghamdi 

Text Book: 

Probability and Statistics for Engineers and Scientists, 2012, Ninth Edition by R. Walpole, R. Myers, S. Myers and K. Ye, Person. 

References: 

1. Introduction to Mathematical Statistics, 2005, Sixth Edition by R. Hogg, J. McKean, and A. Craig, Prentice Hall. 

2. Introduction to the Theory of Statistics, 2007, Third Edition by A. Mood, F. Graybill and D. Boes, McGrow-Hill. 

3. Statistical Inference, 2002, Second Edition by G. Casella and R. Berger, Duxbury. 

Main Topics:  

1. Sampling Distribution and Central Limit Theorem.  

2. Point Estimation. 

3. Estimator Properties: Unbiasedness – Mean Squared Error – Consistency – Sufficiency – Minimal Sufficiency – Completeness - Minimum 

Variance Unbiased Estimator. 

4. Exponential Family Theorem. 

mailto:samalghamdi@ksu.edu.sa
http://fac.ksu.edu.sa/samalghamdi
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5. Fisher Information and Cramer-Rao Inequality. 

6. Rao-Blackwell and Lehmann-Scheffé Theorems. 

7. Estimation Methods: Method of Moments – Maximum Likelihood Method. 

8. Interval Estimation: Pivotal Quantity – Large Sample Confidence Interval. 

9. Bayesian Estimate: Prior and Posterior Distributions – Loss Function Approach – Bayesian Confidence Intervals. 

Marking Scheme: 

25 Marks: First Mid-Term Exam. 

25 Marks: Second Mid-Term Exam. 

10 Marks: Assignments and Quizzes. 

40 Marks: Final Exam. 
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Chapter 1: Introduction 

This chapter introduce a brief review of some basic definitions and statistical distributions.  

 

1.1 Definition and Basic Concept 

In this chapter, we give some basic definitions and concepts. 

Population: 

• A population is the largest collection of elements or individuals in which we are interested in a particular time and 

about which we want to make some statement or conclusion.  

• The population values usually denoted by 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑁), where N is the number of elements in the population, 

called the population size. 

Sample: 

• A sample is a subset of a population on which we collect data.  

• The sample values usually denoted by 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), where n is the number of elements in the sample, called the 

sample size. 

Parameter: 

• A parameter is a measure (or number) obtained from the population values. 

• Values of the parameters are unknown in general. 
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Statistic: 

• A statistic is a measure (or number) obtained from the sample values. 

• Values of the statistic are known in general. 

Random Variable: 

• A random variable X  is a function that associates a real number with each element in the sample space.  

• Most of the time, statisticians deal with two special kinds of random variables, that are discrete and continuous random 

variables. 

Discrete Random Variable: 

A random variable 𝑋 is discrete if: 

1. It can take on values from finite or countable values. 

2. It has a discrete distribution, called the probability mass function (pmf) of 𝑋 if, for each possible outcome 𝑥 

𝑓𝑋(𝑥) ≥ 0,      ∑ 𝑓𝑋(𝑥) = 1,    𝑥   and        𝑓𝑋(𝑥) = 𝑃(𝑋 = 𝑥). 

Continuous Random Variable: 

 A random variable 𝑋 is continuous if: 

1. It can take on values from an interval or not countable values. 

2. It has a continuous distribution, called the probability density function (pdf) for X, defined over the set of real 

numbers, if  

𝑓𝑋(𝑥) ≥ 0   for all 𝑥 ∈ 𝑅,   ∫ 𝑓𝑋(𝑥)𝑑𝑥 = 1,      
∞

−∞
and       𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓𝑋(𝑥)𝑑𝑥

𝑏

𝑎
  . 

Cumulative Distribution Function: 

Let 𝑋 be a random variable. The cumulative distribution function (distribution function or cdf) of 𝑋 is a function such that 
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𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥),  for  −∞ < 𝑥 < ∞. 

Random Sample: 

A random sample is a sample that is chosen randomly. Random sample are used to avoid bias and other unwanted effects. 

Joint Probability distribution: 

The function 𝑓(𝑥, 𝑦) is a joint probability distribution of the random variables X and Y if: 

1. 𝑓(𝑥, 𝑦) ≥ 0, for all (𝑥, 𝑦). 

2.  ∑ ∑ 𝑓(𝑥, 𝑦) = 1 𝑦𝑥 if X and Y are discrete 

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥 = 1 
𝑦𝑥

 if X and Y are continuous. 

Independent Random Variables: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a n random variables, discrete or continuous, with joint probability distribution 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛). The 

random variables 𝑋1, 𝑋2, … , 𝑋𝑛 are said to be mutually statistically independent if and only if  

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑓1(𝑥1)𝑓2(𝑥2) … 𝑓𝑛(𝑥𝑛). 

For all (𝑥1, 𝑥2, … , 𝑥𝑛) within their range. 

Expectations and Moments: 

The rth moment about the origin of the random variable X is given by  

𝜇𝑟
′ = 𝐸(𝑋𝑟) = {

∑ 𝑥𝑟  𝑓𝑋(𝑥),            If 𝑋 is discrete,

∫ 𝑥𝑟  𝑓𝑋(𝑥)𝑑𝑥,     If 𝑋 is continuous.
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The first moment (mean or expected value) and the second moment are given by �́�1 = 𝜇 = 𝐸(𝑋) and �́�2 = 𝐸(𝑋2), 

respectively. 

The variance is defined as 

𝑉𝑎𝑟(𝑋) = 𝜎2 = �́�2 − �́�1
2 = 𝐸[(𝑋 − 𝜇)2] = 𝐸(𝑋2) − (𝐸(𝑋))

2
. 

The standard deviation is the square root of the variance denoted as 

𝜎 = √𝜎2 = √𝐸(𝑋2) − (𝐸(𝑋))
2
. 

The rth central moment of X is defined as  

𝐸[(𝑋 − 𝜇)𝑟] = {
∑(𝑥 − 𝜇)𝑟  𝑓𝑋(𝑥),            If 𝑋 is discrete,

∫(𝑥 − 𝜇)𝑟  𝑓𝑋(𝑥)𝑑𝑥,     If 𝑋 is continuous.
 

Remark: 

If 𝑌 = 𝑎𝑋 ± 𝑏, then the mean and the variance of Y are given by  

𝐸(𝑌) = 𝑎𝐸(𝑋) ± 𝑏    and     𝑉𝑎𝑟(𝑌) = 𝑎2𝑉𝑎𝑟(𝑋) 
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Example1.2: 

Consider the following distribution: 

X -2 0 1 2 Total 

𝑓(𝑥) 0.33 0.24 0.15 0.28 1 

 

Find: 1. 𝑃(𝑋 = 0), 𝑃(𝑋 < 1), 𝑃(𝑋 ≥ 2). 

2. The cdf of X. 

3. The mean and the variance. 

Solution: 

1. 𝑃(𝑋 = 0) = 0.24,   𝑃(𝑋 < 1) = 0.57, 𝑃(𝑋 ≥ 2) = 0.28. 
2. The cdf of X is 

 

X -2 0 1 2 

𝐹(𝑥) 0.33 0.57 0.72 1 

3. The mean and the variance are given as 

X -2 0 1 2 Total 

𝑓(𝑥) 0.33 0.24 0.15 0.28 1 

𝐸(𝑋) -0.66 0 0.15 0.56 0.05 

𝐸(𝑋2) 1.32 0 0.15 1.12 2.59 

Then, 

𝐸(𝑋) = 0.05    and    𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))
2

= 2.59 − 0.052 = 2.5875. 
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Example 1.3: 

Let X be a continuous random variable whose probability density function is 

𝑓(𝑥) = 3𝑥2,     for 0 < 𝑥 < 1. 

Find: 

1. Prove 𝑓(𝑥) is a pdf. 

2. 𝑃(0.5 < 𝑋 < 1). 
3. The cdf of X. 

4. 𝐸(𝑋) and 𝑉𝑎𝑟(𝑋). 

Solution: 

1. Since 𝑓(𝑥) ≥ 0   for all 𝑥 ∈ (0,1) and  

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 3𝑥2𝑑𝑥 =   𝑥3]0
1 = 1

1

0
.

1

0
 Thus, 𝑓(𝑥) is a pdf. 

2. 𝑃(0.5 < 𝑋 < 1) = ∫ 3𝑥2𝑑𝑥 =   𝑥3]0.5
1 = 1

1

0.5
− 0.53 = 0.875. 

3. 𝐹(𝑥) = ∫ 3𝑥2𝑑𝑥 =   𝑥3]0
𝑥 = 𝑥3.

𝑥

0
 

4. 𝐸(𝑋) = ∫ 3𝑥3𝑑𝑥 =
3

4
𝑥4]0

1 =
3

4
.

1

0
 

𝐸(𝑋2) = ∫ 3𝑥4𝑑𝑥 =
3

5
𝑥5]0

1 =
3

5
.

1

0

 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))
2

=
3

5
− (

3

4
)

2

= 0.0375. 
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Moment-Generation Function: 

The moment-generation function (mgf) of a random variable 𝑋 is given by 𝐸(𝑒𝑡𝑋) and is denoted by, 𝑀𝑋(𝑡). Hence, 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) = {
∑ 𝑒𝑡𝑥𝑓(𝑥),        if 𝑋 is discrete,𝑥

∫ 𝑒𝑡𝑥
𝑥

𝑓(𝑥)𝑑𝑥, if 𝑋 𝑖𝑠 continuous
. 

Some properties of the mgf: 

1. 𝑀𝑋+𝑎(𝑡) = 𝑒𝑎𝑡𝑀𝑋(𝑡). 

2. 𝑀𝑎𝑋(𝑡) = 𝑀𝑋(𝑎𝑡).  
 

1.2 Discrete Probability Distributions 

In this section, we present some commonly used distributions for the discrete random variable. 

 

1.2.1 Bernoulli and Binomial Distribution 

A Bernoulli trial can result in a success with probability 𝑝 and a failure with probability 𝑞 = 1 − 𝑝. Then the probability of 

the binomial random variable X, the number of successes in n independent trials, is 

𝑓(𝑥; 𝑛, 𝑝) = (𝑛
𝑥

)𝑝𝑥𝑞𝑛−𝑥 , 𝑥 = 0, 1, 2, … , 𝑛. 

where (𝑛
𝑥

) =
𝑛!

𝑥!(𝑛−𝑥)!
. 

The mean, variance and mgf of the binomial distribution, 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝), are 

𝜇 = 𝑛𝑝,   𝜎2 = 𝑛𝑝𝑞  and 𝑀(𝑡) = (𝑝𝑒𝑡 + 𝑞)𝑛. 
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Example 1.4: 

The probability that a certain kind of component will survive a shock test is 0.75. Find: 

1. The probability that exactly 2 of the next 4 components tested survive. 

2. The probability that more than 2 of the next 4 components tested survive. 

3. The mean and the standard deviation. 

Solution: 

Assuming that the tests are independent and 𝑝 = 0.75 for each of the 𝑛 = 4 tests, we obtain: 

𝑓(𝑥; 4,0.75) = (
4

𝑥
) (0.75)𝑥(0.25)4−𝑥,   𝑥 = 0, 1, 2, 3, 4. 

1. 𝑓(2; 4,0.75) = (4
2
)0.7520.252 = 0.2109 

2. 𝑃(𝑋 > 2) = 𝑓(3; 4,0.75) + 𝑓(4; 4,0.75) = (4
3
)0.7530.251 + (4

4
)0.7540.250 = 0.7383 

3. 𝜇 = 𝑛𝑝 = (4)(0.75) = 3   and 𝜎 = √𝑛𝑝𝑞 = √4(0.75)(0.25) = 0.866. 

 

1.2.2 Poisson Distribution  

The probability distribution of the Poisson random variable X with parameter 𝜆, 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), representing the number of 

outcomes occurring in a given time interval or specified region denoted by t, is  

𝑓(𝑥; 𝜆𝑡) =
𝑒−𝜆𝑡(𝜆𝑡)𝑥

𝑥!
,    𝑥 = 0, 1, 2, … 

where 𝜆 > 0 is the average number of outcomes per unit time, distance or area. 
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The mean and the variance of the Poisson distribution are 

𝜇 = 𝜎2 = 𝜆𝑡. 

Example 1.5: 

Births in a hospital occur randomly at an average rate of 1.6 births per hour. Calculate: 

1. The probability of observing 4 births in a given hour. 

2. The probability of observing more than or equal to 2 births in a given hour. 

3. The mean of births per hour. 

4. The probability of observing 1 birth per 2 hours. 

5. The variance of births per 30 minutes. 

Solution: 

Let X be the number of births in a given hour and 𝜆𝑡 = 1.6 per hour. The pdf of X is given as 

𝑓(𝑥; 1.6) =
𝑒−1.6(1.6)𝑥

𝑥!
,    𝑥 = 0, 1, 2, … 

1. 𝑓(4; 1.6) =
𝑒−1.6(1.6)4

4!
= 0.0551 

2. 𝑃(𝑋 ≥ 2) = 1 − 𝑃(𝑋 < 2) = 1 − [𝑓(1; 1.6) + 𝑓(0; 1.6)] = 0.4751 

3. 𝜇 = 𝜆𝑡 = 1.6 

4. 𝜆𝑡 = (1.6)(2) = 3.2  ⇒ 𝑓(1; 3.2) =
𝑒−3.2(3.2)1

1!
= 0.1304 

5. 𝜎2 = 𝜆𝑡 = (1.6)(0.5) = 0.8. 

 

 



STAT 223                                               Theory of Statistics 1                               Dr. Samah Alghamdi 

 
 

15 
 

1.3 Continuous Probability Distributions 

1.3.1 Uniform Distribution 

The density function of the continuous uniform random variable X on the interval [𝑎, 𝑏] is  

𝑓(𝑥; 𝑎; 𝑏) =
1

𝑏−𝑎
,   𝑎 ≤ 𝑥 ≤ 𝑏. 

The mean and the variance of the uniform distribution, 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎, 𝑏), are 

𝜇 =
𝑎+𝑏

2
   and   𝜎2 =

(𝑏−𝑎)2

12
.  

Example 1.6:  

Suppose that a large conference room at a certain company can be reserved for no more than 4 hours. In fact, it can be assumed 

that the length 𝑋 of a conference has a uniform distribution on interval [0, 4]. 

(a) What is the probability density function? 

(b) What is the probability that any given conference lasts at least 3 hours? 

Solution: 

(a) The appropriate density function for the uniformly distributed random variable 𝑋 in the situation is  

𝑓(𝑥) =
1

4
,     0 ≤ 𝑥 ≤ 4 

(b) 𝑃[𝑋 ≥ 3] = ∫
1

4
 𝑑𝑥 =

1

4

4

3
. 
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1.3.2 Exponential Distribution 

The pdf of the exponential distribution for a continuous random variable X with parameter 𝜃 > 0, denoted as 𝐸𝑥𝑝𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (
1

𝜃
), 

is given as 

𝑓(𝑥; 𝜃) = 𝜃𝑒−𝜃𝑥,   𝑥 ≥ 0 

The mean and the variance of this distribution are 

𝐸(𝑋) =
1

𝜃
      and      𝑉(𝑋) =

1

𝜃2
. 

The cdf and mgf obtained as 

𝐹(𝑥) = 1 − 𝑒−𝜃𝑥  and   𝑀(𝑡) =
𝜃

𝜃−𝑡
= (1 −

𝑡

𝜃
)

−1
 , 𝑡 < 𝜃. 

 

1.3.3 Gamma Distribution 

The continuous random variable X has a gamma distribution with parameters 𝛼 and 
1

𝛽
, 𝐺𝑎𝑚𝑚𝑎 (𝛼,

1

𝛽
) if its density function 

is given by  

𝑓 (𝑥; 𝛼,
1

𝛽
) =

𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥,   𝑥 ≥ 0  

where 𝛼 > 0, 𝛽 > 0 and Γ(𝛼) is a gamma function defined as  

Γ(𝛼) = (𝛼 − 1)! = ∫ 𝑦𝛼−1𝑒−𝑦
∞

0

𝑑𝑦 
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The mean, the variance and the mgf are 

𝐸(𝑋) =
𝛼

𝛽
 ,     𝑉(𝑥) =

𝛼

𝛽2
   and   𝑀(𝑡) = (

𝛽

𝛽−𝑡
)

𝛼
= (1 −

𝑡

𝛽
)

−𝛼
, 𝑡 < 𝛽. 

Note:  

1. The exponential distribution is a special case of gamma distribution with 
1

𝛽
  parameter when 𝛼 = 1. 

2.  ∫ 𝑥𝛼−1𝑒−𝛽𝑥𝑑𝑥 =
Γ(𝛼)

𝛽𝛼

∞

0
 . 

 

1.3.4 Weibull Distribution 

The continuous random variable X  has a Weibull distribution, with parameters 𝛼 and 
1

𝛽
, if its pdf is given by 

𝑓 (𝑥; 𝛼,
1

𝛽
) = 𝛼𝛽𝑥𝛽−1𝑒−𝛼𝑥𝛽

,   𝑥 ≥ 0 

where 𝛼 > 0 and 𝛽 > 0. 

The cumulative distribution function for the Weibull distribution is given by 

𝐹(𝑥) = 1 − 𝑒−𝛼𝑥𝛽
. 

Note: For 𝛽 = 1, the Weibull density reduces to the exponential density function. 
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1.3.5 Chi-Squared Distribution 

The random variable X has a chi-squared distribution with 𝑣 > 0 degrees of freedom, denoted as, 𝑋~𝜒2(𝑣), if its pdf is given 

by 

𝑓(𝑥, 𝑣) =
1

2
(

𝑣
2

)
Γ(

𝑣

2
)

𝑥
𝑣

2
−1𝑒−

𝑥

2,   𝑥 > 0 

The mean and the variance are 

𝐸(𝑋) = 𝑣      and      𝑉(𝑥) = 2𝑣. 

The mgf of this distribution is 𝑀(𝑡) = (1 − 2𝑡)− 
𝑣

2, 𝑡 >
1

2
. 

Note: It is a special case of gamma distribution in which 𝛼 =
𝑣

2
 and 𝛽 =

1

2
. 

Example 1.7:  

Let X be a 𝜒2(10). Find: 

1. Find 𝑃(𝑋 > 20.5). 

2. 𝑎, if 𝑃(𝑋 > 𝑎) = 0.05. 

Solution: 

By 𝜒2 Table (Table I) and 𝑣 = 10, we get 

1. 𝑃(𝑋 > 20.5) = 0.025 

2. 𝑃(𝑋 > 𝑎) = 0.05, thus 𝑎 = 18.31. 
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1.3.6 Normal Distribution 

The most important continuous probability distribution in the entire field of statistics is the normal distribution. Its graph, 

called the normal curve, is the bell-shaped curve of following figure, which approximately describes many phenomena that 

occur in nature, industry, and research.  

 

 

 

 

 

Definition: 

The density of the normal random variable 𝑋, with mean 𝜇 and variance 𝜎2, 𝑋~𝑁(𝜇, 𝜎2), is  

𝑓(𝑥;  𝜇, 𝜎) =  
1

𝜎√2𝜋
𝑒

− 
1

2𝜎2(𝑥−𝜇)2

, −∞ < 𝑥 < ∞ 

where −∞ <  𝜇 < ∞ and 𝜎 > 0. 

The properties of the normal curves: 

1. The mode = median = mean = 𝜇. 

2. The curve is symmetric about the mean 𝜇. 

3. The normal curve depends on the parameters μ and 𝜎, its mean and standard deviation, respectively. 

4. The mean 𝜇 and the variance 𝜎2 determine the location and the shape of the normal curve, respectively. 

← 𝜎 → 
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5. The total area under the curve and above the horizontal axis is equal to 1. 

6. The mgf is given by 𝑀(𝑡) = 𝑒𝜇𝑡+
1

2
𝜎2𝑡2

. 

 

1.3.7 Standard Normal Distribution 

The distribution of a normal random variable with mean 0 and variance 1 is called a standard normal distribution and 

defined as 

𝑓(𝑧) =  
1

√2𝜋
𝑒− 

𝑧2

2 , −∞ < 𝑧 < ∞. 

The properties of the standard normal curves: 

1. The mode = median = mean = 0. 

2. The curve is symmetric about the mean 0. 

3. The total area under the curve and above the horizontal axis is equal to 1. 

4. The mgf is given by 𝑀(𝑡) = 𝑒
1

2
𝑡2

. 

Application: we are able to transform all the observations of any normal random variable 𝑋 into a new set of observations of 

a normal random variable 𝑍 with mean 0 and variance 1. This can be done by mean of the transformation i.e. 

If 𝑋~𝑁(𝜇, 𝜎2), then 𝑍 =
𝑋−𝜇

𝜎
~𝑁(0,1). 
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Example 1.8: 

Given a standard normal distribution, find the area under the curve that lies 

1. to the left of 𝑧 = 1.84. 

2.  to the right of 𝑧 = 1.84. 

Solution: From Table II, 

1. the area to the left of 𝑧 = 1.84 is equal to, 

𝑃(𝑍 < 1.84) = 0.9671. 

2. the area to the right of 𝑧 = 1.84 is equal to,  

𝑃(𝑍 > 1.84) = 1 − 𝑃(𝑍 < 1.84) = 1 − 0.9671 = 0.0329. 

 

Normal Approximation to the Binomial: 

Theorem 1.1:  

If X is a binomial random variable with mean 𝜇 = 𝑛𝑝 and variance 𝜎2 = 𝑛𝑝𝑞, then the limiting form of the distribution of  

𝑍 =
𝑋 − 𝑛𝑝

√𝑛𝑝𝑞
~𝑁(0,1) 

as 𝑛 → ∞. 
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1.3.8 T-Distribution 

A continuous random variable T is said to have a t-distribution with parameter 𝑣 > 0 if its pdf defined as  

𝑓(𝑡; 𝜈) =
𝛤(

𝜈+1

2
)

√𝜈𝜋𝛤(
𝜈

2
)
 (1 +

𝑡2

𝜈
)

−
𝜈+1

2
;    −∞ < 𝑡 < ∞. 

The properties of the standard normal curves: 

1. The mode = median = mean = 0. 

2. The curve is symmetric about the mean 0. 

3. Compared to the standard normal distribution, the t-distribution is less peaked in the center and has higher tails.  

4. It depends on the degrees of freedom v. 

5. T-distribution approaches the standard normal distribution as 𝑣 → ∞. 

6. The total area under the curve and above the horizontal axis is equal to 1. 

Example 1.9: Find: 

1. 𝑃(𝑇 < 2.145) when 𝑣 = 14. 

2. 𝑡0.995 when 𝑣 = 7. 

Solution: From Table III, 

1. 𝑃(𝑇 < 2.145) = 0.975 when 𝑣 = 14. 

2. 𝑡0.995 = 3.499 when 𝑣 = 7. 
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1.3.9 F-Distribution 

If a random variable X has a F-distribution with parameters r and v, we write 𝑋~𝐹(𝑟, 𝑣) . Then the probability density function 

for X is given by 

𝑓(𝑥; 𝑟, 𝑣) =
1

𝐵 (
𝑟
2 ,

𝑣
2)

(
𝑟

𝑣
)

𝑟
2

𝑥
𝑟
2

−1 (1 +
𝑟

𝑣
𝑥)

−(
𝑟+𝑣

2
)

 

For real 𝑥 ≥ 0. Here is 𝐵(𝑎, 𝑏) = ∫ 𝑦𝑎−1(1 − 𝑦)𝑏−1𝑑𝑦
1

0
 is the beta function and 𝑟, 𝑣 > 0. 

Theorem 1.2: 

If 𝐹𝛼(𝑟, 𝑣) has F-distribution with r and v degrees of freedom, then  

𝐹1−𝛼(𝑣, 𝑟) =
1

𝐹𝛼(𝑟, 𝑣)
 

has F-distribution with v and r degrees of freedom. 
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1.4 Transformation of Variables 

In standard statistical methods, the result of statistical hypotheses testing, estimation, or even statistical graphics does not 

involve a single random variable but, rather, functions of one or more random variables. As a result, statistical inference 

requires the distribution of these functions. In this section, we represent methods to find the distribution of these functions. 

 

1.4.1 Discrete Random Variable 

1.4.1.1 One-to-One Transformation:  

Theorem 1.3:  

Suppose that 𝑋 is a discrete random variable with probability distribution 𝑓(𝑥). Let 𝑌 = 𝑢(𝑋) define a one-to-one 

transformation between the values of 𝑋 and 𝑌 so that the equation 𝑦 = 𝑢(𝑥) can be uniquely solved for 𝑥 in terms of 𝑦, say 

𝑥 = 𝑤(𝑦). Then the probability distribution of 𝑌 is 

𝑔(𝑦) = 𝑓[𝑤(𝑦)]. 

Example 1.11:  

Let 𝑋 be a discrete random variable with pmf as 

𝑓(𝑥) =  
𝑥

4
 ,   𝑥 = 0, 1, 3. 

Find the pmf of the random variable 𝑌 = 𝑋2. 

Solution:  

Since the value of 𝑋 are all positive, the transformation defines a one-to-one correspondence between the 𝑥 and 𝑦 values.  
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Hence, 

 Since  𝑥 = 0, 1, 3 ⟹ 𝑦 = 0, 1, 9 and 𝑦 = 𝑥2 ⟹ 𝑥 = √𝑦. 

Then, the pmf of Y is given by 

𝑔(𝑦) = 𝑓(√𝑦) = √𝑦

4
,   𝑦 = 0, 1, 9. 

Similarly, for a two-dimension transformation. 

 

Theorem 1.4:  

Suppose that 𝑋1 and 𝑋2 are discrete random variables with joint probability distribution 𝑓(𝑥1, 𝑥2). Let 𝑌1 = 𝑢1(𝑋1, 𝑋2) and 

𝑌2 =  𝑢2(𝑋1, 𝑋2) define a one-to-one transformation between the points (𝑥1, 𝑥2) and (𝑦1, 𝑦2) so that the equations 

𝑦1 =  𝑢1(𝑥1, 𝑥2) and 𝑦2 =  𝑢2(𝑥1, 𝑥2) 

may be uniquely solved for 𝑥1 and 𝑥2 in terms of 𝑦1 and 𝑦2, say 𝑥1 =  𝑤1(𝑦1, 𝑦2) and 𝑥2 =  𝑤2(𝑦1, 𝑦2). Then the joint 

probability distribution of 𝑌1 and 𝑌2 is  

𝑔(𝑦1, 𝑦2) = 𝑓[𝑤1(𝑦1, 𝑦2), 𝑤2 (𝑦1, 𝑦2)] 
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1.4.2 Continuous Random Variable 

This section introduced three methods of transformation to find the distribution of continuous random variable. 

 

1.4.2.1 One-to-One Transformation 

Theorem 1.5:  

Suppose that 𝑋 is a continuous random variable with probability distribution 𝑓(𝑥). Let 𝑌 = 𝑢(𝑋) define a one-to-one 

correspondence between the values of 𝑋 and 𝑌 so that the equation 𝑦 = 𝑢(𝑥) can be uniquely solved for 𝑥 in terms of 𝑦, say 

𝑥 = 𝑤(𝑦). Then the probability distribution of 𝑌 is  

𝑔(𝑦) = 𝑓[𝑤(𝑦)]. |𝐽| 

where |𝐽| = |𝑤′(𝑦)| = |
𝜕𝑥

𝜕𝑦
| and is called the Jacobian of the transformation. 

Example 1.12:  

Let 𝑋 be a continuous random variable with probability distribution 

𝑓(𝑥) = {

𝑥

12
, 1 < 𝑥 < 5,

0, elsewhere.
 

Find the probability distribution of the random variable 𝑌 = 2𝑋 − 3. 

Solution: 

The inverter solution of 𝑦 = 2𝑥 − 3 yields 𝑥 = (𝑦 + 3)/2, from which we obtain 𝐽 = 𝑤′(𝑦)  =
𝑑𝑥

𝑑𝑦
=

1

2
.  
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Therefore,  

  1 < 𝑥 < 5 ⟹  1 <
𝑦 + 3

2
< 5 ⇒  2 < 𝑦 + 3 < 10 ⇒  −1 < 𝑦 < 7 

Using Theorem 1.5, we find the density function of 𝑌 to be 

𝑔(𝑦) = {

(𝑦+3)
2⁄

12
(

1

2
) =  

𝑦+3

48
,       − 1 < 𝑦 < 7

0,                                         elswhere
. 

 

Theorem 1.6:  

Suppose that 𝑋1 and 𝑋2 are continuous random variable with joint probability distribution 𝑓(𝑥1, 𝑥2). Let 𝑌1 =

𝑢1(𝑋1, 𝑋2) and 𝑌2 = 𝑢2(𝑋1, 𝑋2) define a one-to-one transformation between the points (𝑥1, 𝑥2) and (𝑦1, 𝑦2) so that the 

equations 𝑦1 = 𝑢1(𝑥1, 𝑥2) and 𝑦2 = 𝑢2(𝑥1, 𝑥2) may be uniquely solved for 𝑥1 and 𝑥2 in terms of 𝑦1 and 𝑦2, say 𝑥1 =

𝑤1(𝑦1, 𝑦2) and 𝑥2 = 𝑤2(𝑦1, 𝑦2). Then the joint probability distribution of 𝑌1 and 𝑌2 is 

𝑔(𝑦1, 𝑦2) = 𝑓[𝑤1(𝑦1, 𝑦2), 𝑤2(𝑦1, 𝑦2)]. |𝐽| 

where the Jacobian is 2 × 2 determinant as 

|𝐽| = |

𝜕𝑥1

𝜕𝑦1

𝜕𝑥1

𝜕𝑦2

𝜕𝑥2

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

|. 
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1.4.2.2 Distribution Function Method (cdf Method): 

The general method works as follows: 

If 𝑋 be an independent random variable with pdf 𝑓𝑋(𝑥) and 𝑌 = 𝑢(𝑋) be a function of 𝑋. Then, find 

1. 𝐹𝑋(𝑥), cdf of X. 

2. The region of Y. 

3. 𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(𝑢(𝑋)  ≤ 𝑦) = 𝑃(𝑋 ≤ 𝑤(𝑌)) = 𝐹𝑋(𝑤(𝑌)). 

4. The density function 𝑓𝑌(𝑦) by differentiating 𝐹𝑌(𝑦). 

 

Example 1.13: 

Suppose the random variable X  has a pdf  

𝑓𝑋(𝑥) = 3𝑥2,      0 < 𝑥 < 1. 

Find the pdf of 𝑌 = 2𝑋 + 3. 

Solution: 

From Example 1.3, we get 𝐹𝑋(𝑥) = 𝑥3. 

Since 0 < 𝑥 < 1 ⟹ 0 < 2𝑥 < 2 ⇒ 3 < 𝑦 < 5. 

𝐹𝑌(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃(2𝑋 + 3 ≤ 𝑦) = 𝑃(2𝑋 ≤ 𝑦 − 3)  = 𝑃 (𝑋 ≤
𝑦 − 3

2
) = 𝐹𝑋 (

𝑦 − 3

2
) = (

𝑦 − 3

2
)

3

. 

Then, the pdf of Y is 𝑓𝑌(𝑦) =
𝑑𝐹𝑌(𝑦)

𝑑𝑦
=

3

8
(𝑦 − 3)2, 3 < 𝑦 < 5.   
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1.4.2.3 Moment-Generating Method: 

Theorem 1.7: (uniqueness Theorem)  

Let 𝑋 and 𝑌 be two random variables with moment-generating functions 𝑀𝑋(𝑡) and 𝑀𝑌(𝑡), respectively, if 𝑀𝑋(𝑡) = 𝑀𝑌(𝑡) 

for all values of 𝑡, then 𝑋 and 𝑌 have the same probability distribution. 

Theorem 1.8: 

If 𝑋1, 𝑋2, … . . , 𝑋𝑛 are independent random variable with moment-generating functions 𝑀𝑋1
(𝑡), 𝑀𝑋2

(𝑡), … . . , 𝑀𝑋𝑛
(𝑡), 

respectively, and 𝑌 = 𝑋1 + 𝑋2 + ⋯ . +𝑋𝑛, then 

𝑀𝑌(𝑡) =   𝑀𝑋1
(𝑡). 𝑀𝑋2

(𝑡) … 𝑀𝑋𝑛
(𝑡). 

Moreover, if 𝑀𝑋1
(𝑡), 𝑀𝑋2

(𝑡), … . . , 𝑀𝑋𝑛
(𝑡)are equals. Then,  𝑀𝑌(𝑡) =   (𝑀𝑋1

(𝑡))
𝑛

. 

Example 1.14: 

If 𝑋1, 𝑋2, … . . , 𝑋𝑛 are independent, each with an exponential distribution with parameter 
1

𝜃
. Show that 𝑌 = ∑ 𝑋𝑖

𝑛
𝑖=1  has a 

gamma distribution with parameters n and 
1

𝜃
. 

Solution: 

Since that the mgf of 𝑒𝑥𝑝𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (
1

𝜃
) is 𝑀𝑋(𝑡) =

𝜃

𝜃−𝑡
. Thus, the mgf of Y is given by 

𝑀𝑌(𝑡) = 𝑀∑ 𝑋𝑖
𝑛
𝑖=1

(𝑡) = 𝑀𝑋1+𝑋2+⋯.+𝑋𝑛
(𝑡) = 𝑀𝑋1

(𝑡). 𝑀𝑋2
(𝑡) … 𝑀𝑋𝑛

(𝑡) = (
𝜃

𝜃−𝑡
)

𝑛
. 

which is the mgf of 𝐺𝑎𝑚𝑚𝑎 (𝑛,
1

𝜃
).  
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Chapter 2: Sampling Distribution 

 

In a typical statistical problem, we have a random variable X of interest but its probability distribution 𝑓(𝑥) is not known. 

This problem can be classified in one of two ways: 

1. 𝑓(𝑥) is completely unknown (Sampling Distribution). 

2. The form of 𝑓(𝑥) is known but the parameter 𝜃 is unknown (Statistical Inference). 

In this chapter, we will discuss the first problem and introduce some solution methods. First, let us begin with important 

definitions. 

Random sample: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a n independent random variables, each of which has the same probability distribution 𝑓(𝑥). Define 

𝑋1, 𝑋2, … , 𝑋𝑛 to be a random sample of size n from the population 𝑓(𝑥) and write its joint probability distribution as  

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑓1(𝑥1)𝑓2(𝑥2) … 𝑓𝑛(𝑥𝑛). 

Statistic: 

Any function of the random sample and does not depend upon any unknown parameter is called a statistic.  

Sampling Distribution: 

The probability distribution of a statistic is called a sampling distribution. 

In this chapter, we studied several of the important sampling distributions of frequently used statistic. Applications of these 

sampling distributions to problems of statistical inference are considered throughout most of the remaining chapters.  
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In Chapter 1 we defined the two parameters 𝜇 and 𝜎2, which measure the center of location and the variability of a probability 

distribution, respectively. Here, we shall define some important statistics that describe corresponding measures of a random 

sample. The most common statistics are the sample mean and variance. 

Mean and Variance: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 denote a random sample of size n from a given distribution. The statistic 

�̅� =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 , 

is called the mean of the random sample, and the statistic 

𝑆2 =
1

𝑛−1
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1 , 

is called the variance of the random sample. 

Now, we should view the sampling distribution of �̅� and 𝑆2 as the mechanisms from which we will be able to make inference 

on the unknown parameters 𝜇 and 𝜎2. 

 

2.1 Sampling Distribution of �̅� 

Suppose that we have a population with mean 𝜇 and variance 𝜎2 and let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of size n from this 

population. Let the mean of the random sample be �̅�. Now, consider the following theorems of different cases of sampling 

distribution of �̅�. 
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Theorem 2.1: 

Let 𝑋1, … . , 𝑋𝑛 be independent random variables such that, for 𝑖 = 1, … , 𝑛,  𝑋𝑖 has a 𝑁(𝜇𝑖 , 𝜎𝑖
2) distribution. Let 𝑌 =

 ∑ 𝑎𝑖
𝑛
𝑖=1 𝑋𝑖, where 𝑎1, … . , 𝑎𝑛 are constants. Then, the distribution of 𝑌 is 𝑁(∑ 𝑎𝑖

𝑛
𝑖=1 𝜇𝑖 , ∑ 𝑎𝑖

2𝜎𝑖
2𝑛

𝑖=1 ).  

Proof:  

Using independent and the mgf of normal distribution, for 𝑡 ∈ 𝑅, the mgf of 𝑌 is, 

𝑀𝑌(𝑡) = 𝐸(𝑒𝑡𝑌) = 𝐸[𝑒𝑡 ∑ 𝑎𝑖𝑋𝑖
𝑛
𝑖=1 ] 

                                  =  ∏ 𝐸[𝑒𝑡𝑎𝑖𝑋𝑖]𝑛
𝑖=1 =  ∏ 𝑒𝑎𝑖𝜇𝑖𝑡+

1

2
𝑎𝑖

2𝜎𝑖
2𝑡2𝑛

𝑖=1  

                                                                                    = 𝑒
∑ 𝑎𝑖𝜇𝑖

𝑛
𝑖=1 𝑡+

1

2
∑ 𝑎𝑖

2𝜎𝑖
2𝑡2𝑛

𝑖=1  

which is the mgf of a 𝑁(∑ 𝑎𝑖𝜇𝑖 , ∑ 𝑎𝑖
2𝜎𝑖

2𝑛
𝑖=1

𝑛
𝑖=1 ) distribution. 

 

Example 2.1: 

Let 𝑋1~𝑁(3,2) and 𝑋2~𝑁(2,1). Find the distribution of 𝑌 = 5𝑋1 − 2𝑋2. 

 

Solution: 

𝐸(𝑌) = 5𝐸(𝑋1) − 2𝐸(𝑋2) = 15 − 4 = 11 

𝑉𝑎𝑟(𝑌) = 25𝐸(𝑋1) + 4𝐸(𝑋2) = 50 + 4 = 54 

Then, the distribution of Y is obtained as 𝑌~𝑁(11, 54). 
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Theorem 2.2: 

If 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from any distribution with mean 𝜇 and variance 𝜎2; then  

𝜇�̅� =  𝜇 and variance 𝜎�̅�
2 =

𝜎2

𝑛
. 

Proof: 

Since 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample, then  

𝜇�̅� =  𝐸( �̅�) = 𝐸 (
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 ) =

1

𝑛
∑ 𝐸(𝑋𝑖) =

1

𝑛
𝑛 𝜇 =𝑛

𝑖=1 𝜇. 

𝜎�̅�
2 = 𝑉𝑎𝑟( �̅�) = 𝑉𝑎𝑟 (

1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 ) =

1

𝑛2
∑ 𝑉𝑎𝑟(𝑋𝑖)𝑛

𝑖=1 =
1

𝑛2
𝑛 𝜎2 =

𝜎2

𝑛
. 

 

Theorem 2.3: 

Suppose that 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of 𝑛 observations are taken from a normal population with mean 𝜇 and 

variance 𝜎2. Each observation 𝑋𝑖 , 𝑖 = 1, 2, … . , 𝑛, has the same normal distribution. Hence, we conclude that  

1. �̅� has a normal distribution with mean 𝜇 and variance 
𝜎2

𝑛
, [i. e.  �̅�~𝑁 (𝜇,

𝜎2

𝑛
)]. 

2. 𝑍 =
�̅�−𝜇

𝜎 √𝑛⁄
~𝑁(0,1). 
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Proof: 

Since, we know 𝑋1, 𝑋2, … , 𝑋𝑛 are independent random variables and have the same normal distribution, then they have the 

same mgf which is  

𝑀𝑋𝑖
(𝑡) = 𝑒𝜇𝑡+

1
2

𝜎2𝑡2

 , 𝑖 = 1, 2, … , 𝑛. 

Now, by using the mgf transformation method (Theorem 1.8), we get 

𝑀�̅�(𝑡) = 𝐸(𝑒 �̅�𝑡) = 𝐸 (𝑒
1
𝑛

∑ 𝑋𝑖
𝑛
𝑖=1  𝑡) = 𝐸 (𝑒

1
𝑛

(𝑋1+𝑋2+⋯+𝑋𝑛) 𝑡) 

                                                                                = 𝐸 (𝑒𝑋1 
𝑡

𝑛
+𝑋2

𝑡

 𝑛
+⋯+𝑋𝑛 

𝑡

𝑛) = (𝑀𝑋1
(

𝑡

𝑛
))

𝑛

, for any random variable 𝑋1 

                                                                                = (𝑒
𝜇

𝑡

𝑛
+

1

2
𝜎2 𝑡2

𝑛2)

𝑛

= 𝑒𝜇𝑡+
1

2
 
𝜎2

𝑛
 𝑡2

. 

which is the mgf of the normal distribution with mean 𝜇 and variance 
𝜎2

𝑛
. 

 

Theorem 2.4:  Central Limit Theorem:  

If 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample of size n from any distribution with mean 𝜇 and variance 𝜎2; if �̅� is the mean of the 

random sample, then as 𝑛 → ∞, 

1. �̅� has approximately a normal distribution with mean 𝜇 and variance 
𝜎2

𝑛
, [i. e.  �̅�~𝑁 (𝜇,

𝜎2

𝑛
)]. 

2. 𝑍 =
�̅�−𝜇

𝜎 √𝑛⁄
~𝑁(0,1). 
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Example 2.2:  

An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed, with mean 

equal to 800 hours and a standard deviation of 40 hours, find the probability that a random sample of 16 bulbs will have an 

average life of less than 775 hours. 

Solution:  

The sampling distribution of �̅� will be approximately normal, with 𝜇�̅� = 800 and 𝜎�̅� =
40

√16
= 10. Then,  

𝑃(�̅� < 775) = 𝑃 (𝑍 <
775−800

10
) = 𝑃(𝑍 < −2.5) = 0.0062. 

 

Theorem 2.5:  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample of size n from a normal distribution with mean 𝜇 and unknown variance 𝜎2, then  

1. �̅� has a t-distribution with mean 𝜇, variance 
𝑆2

𝑛
 and (𝑛 − 1) degrees of freedom. 

2. 𝑇 =
�̅�−𝜇

𝑆 √𝑛⁄
~𝑡(𝑛−1). 

 

Example 2.3: 

A sample of 16 ten-year-old girls had a standard deviation of 12 pounds. Assume the population is normal distribution with 

mean weight 70 pounds. Find 𝑃(�̅� > 74). 
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Solution: 

We have, 𝜇 = 70, 𝑆 = 12 and 𝑛 = 16. Then, �̅� has a t-distribution with 𝑛 − 1 = 15 degree of freedom. Thus, 

𝑃(�̅� > 74) = 1 − 𝑃 (𝑇 <
74 − 70

12 √16⁄
) = 1 − 𝑃(𝑇 < 1.333) = 1 − 0.9 = 0.1 

 

2.2 Sampling Distributions from the Normal and Chi-Squared Distributions 

In this section we introduce some sampling distributions of some important and useful random variables. 

 

Theorem 2.6: 

Let 𝑍~𝑁(0, 1). Then, 𝑈 = 𝑍2 = (
𝑋−𝜇

𝜎
)

2
 follows the chi-squared distribution with 1 degree of freedom i.e. 𝑍2~𝜒1

2. 

Proof: 

We know that the pdf of Z is 𝑓(𝑧) =
1

√2𝜋
𝑒−

1

2
𝑧2

. Now, to find the distribution of 𝑈, use the cdf transformation method as 

following: 

𝐹𝑈(𝑢) = 𝑃(𝑈 ≤ 𝑢) = 𝑃(𝑍2 ≤ 𝑢) = 𝑃(−√𝑢 ≤ 𝑍 ≤ √𝑢) = 𝐹𝑍(√𝑢) − 𝐹𝑍(−√𝑢). 

Therefore, 

                                             𝑓𝑈(𝑢) = 𝑓𝑍(√𝑢)
𝑑𝑧

𝑑𝑢
− 𝑓𝑍(−√𝑢)

𝑑𝑧

𝑑𝑢
 

=
1

2
𝑢− 

1

2
1

√2𝜋
𝑒− 

1

2
𝑢 +

1

2
𝑢− 

1

2
1

√2𝜋
𝑒− 

1

2
𝑢 =

1

2
1
2 Γ(

1

2
)

𝑢− 
1

2𝑒− 
𝑢

2 . 

which is the pdf of chi-squared distribution with 1 degree of freedom. 
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Corollary 2.1: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of size n from a normal population with mean 𝜇 and variance 𝜎2. If the mean of the 

random sample is 𝑋,̅ where �̅�~𝑁 (𝜇,
𝜎2

𝑛
) and 

�̅�−𝜇

𝜎 √𝑛⁄
~𝑁(0, 1), then 

(
�̅�−𝜇

𝜎 √𝑛⁄
)

2

~𝜒1
2. 

Proof: 

Left as an exercise. 

 

Theorem 2.7: 

Let 𝑍1, 𝑍2, … . . , 𝑍𝑛 be independent random variables with 𝑍𝑖 =
𝑋𝑖−𝜇𝑖

𝜎𝑖
~𝑁(0, 1), where 𝑋𝑖~𝑁(𝜇𝑖 , 𝜎𝑖) for each 𝑖 = 1, 2, … , 𝑛. If 

𝑌 = ∑ 𝑧𝑖
2 = ∑ (

𝑋𝑖−𝜇𝑖

𝜎𝑖
)

2
𝑛
𝑖=1

𝑛
𝑖=1  then 𝑌 follows the chi-squared distribution with 𝑛 degrees of freedom. We write 𝑌 =

∑ 𝑧𝑖
2𝑛

𝑖=1 ~χ𝑛
2 . 

Proof: 

Since 𝑍1, 𝑍2, … , 𝑍𝑛 are independent, then 

𝑀𝑌(𝑡) = 𝑀∑ 𝑧𝑖
2𝑛

𝑖=1
(𝑡) = 𝐸(𝑒(𝑧1

2+𝑧2
2+⋯+𝑧𝑛

2)𝑡) 

                                                 = 𝐸(𝑒𝑧1
2𝑡). 𝐸(𝑒𝑧2

2𝑡) … 𝐸(𝑒𝑧𝑛
2𝑡) 

                                            = 𝑀𝑧1
2(𝑡) 𝑀𝑧2

2(𝑡) … 𝑀𝑧𝑛
2(𝑡) 

From Theorem 2.6, each 𝑍𝑖
2 follows χ1

2 and therefore it has mgf equal to (1 − 2𝑡)− 
1

2. Conclusion: 

  𝑀𝑌(𝑡) = (𝑀𝑧1
2(𝑡))

𝑛
= (1 − 2𝑡)− 

𝑛

2  ,  for  𝑡 >
1

2
 

This is the mgf of chi-squared distribution with 𝑛 degrees of freedom. 
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Corollary 2.2: 

Let 𝑋1, 𝑋2, … . , 𝑋𝑛 is a random sample from 𝑁(𝜇, 𝜎2), then ∑ (
𝑋𝑖−𝜇

𝜎
)

2
𝑛
𝑖=1 ~χ𝑛

2 . 

 

Theorem 2.8: 

If 𝑆2 =
1

𝑛−1
∑ (𝑋𝑖

𝑛
𝑖=1 −�̅�)2 is the sample variance of a random sample from a normal distribution with mean 𝜇  and variance 

𝜎2, then  

𝑈 =
(𝑛 − 1)𝑆2

𝜎2
~χ𝑛−1

2  

Proof: 

Since 𝑆2 =
1

𝑛−1
∑ (𝑋𝑖

𝑛
𝑖=1 −�̅�)2, where �̅� =

1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1 ; then we can redefine U as 

𝑈 =
(𝑛 − 1)𝑆2

𝜎2
=

∑ (𝑋𝑖
𝑛
𝑖=1 −�̅�)2

𝜎2
 

Now, let 

∑ (𝑋𝑖
𝑛
𝑖=1 −�̅�)2 = ∑ [(𝑋𝑖 − 𝜇) − (�̅� − 𝜇)]2𝑛

𝑖=1 , 

                                                                   = ∑ [(𝑋𝑖 − 𝜇)2 − 2(𝑋𝑖 − 𝜇)(�̅� − 𝜇) + (�̅� − 𝜇)2]𝑛
𝑖=1   

                                                                   = ∑ (𝑋𝑖 − 𝜇)2𝑛
𝑖=1 − 2(𝑛�̅� − 𝑛𝜇)(�̅� − 𝜇)+𝑛(�̅� − 𝜇)2 

                                                                                       = ∑ (𝑋𝑖 − 𝜇)2𝑛
𝑖=1 − 2𝑛(�̅� − 𝜇)2+𝑛(�̅� − 𝜇)2 

                         = ∑ (𝑋𝑖 − 𝜇)2𝑛
𝑖=1 − 𝑛(�̅� − 𝜇)2. 

Then,  

𝑈 =
1

𝜎2
[∑ (𝑋𝑖 − 𝜇)2𝑛

𝑖=1 − 𝑛(�̅� − 𝜇)2] = ∑ (
𝑋𝑖−𝜇

𝜎
)

2
𝑛
𝑖=1 − (

�̅�−𝜇

𝜎 √𝑛⁄
)

2

. 
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  Use the mgf transformation method to find the distribution of 𝑈 as follows 

𝑀𝑈(𝑡) = 𝐸(𝑒𝑈 𝑡) = 𝐸 (𝑒
[∑ (

𝑋𝑖−𝜇
𝜎

)
2

𝑛
𝑖=1 −(

�̅�−𝜇

𝜎 √𝑛⁄
)

2

]𝑡
) 

Since, ∑ (
𝑋𝑖−𝜇

𝜎
)

2
𝑛
𝑖=1 and (

�̅�−𝜇

𝜎 √𝑛⁄
)

2

  are independent random variables (Prove it), we can get 

𝑀𝑈(𝑡) = 𝐸 (𝑒
∑ (

𝑋𝑖−𝜇
𝜎

)
2

𝑡𝑛
𝑖=1 ) 𝐸 (𝑒

−(
�̅�−𝜇

𝜎 √𝑛⁄
)

2

𝑡
) =

𝐸 (𝑒
∑ (

𝑋𝑖−𝜇
𝜎

)
2

𝑡𝑛
𝑖=1 )

𝐸 (𝑒
(

�̅�−𝜇

𝜎 √𝑛⁄
)

2

𝑡
)

=

𝑀
∑ (

𝑥𝑖−𝜇
𝜎

)
2

𝑛
𝑖=1

(𝑡)

𝑀
(

�̅�−𝜇

𝜎 √𝑛⁄
)

2(𝑡)
 

From Corollary 2.1 and Corollary 2.2, we found that 

∑ (
𝑋𝑖−𝜇

𝜎
)

2
𝑛
𝑖=1 ~𝜒𝑛

2   and   (
�̅�−𝜇

𝜎 √𝑛⁄
)

2

~𝜒1
2 

i.e.,  

𝑀
∑ (

𝑋𝑖−𝜇

𝜎
)

2
𝑛
𝑖=1

(𝑡) = (1 − 2𝑡)− 
𝑛

2   and  𝑀
(

�̅�−𝜇

𝜎 √𝑛⁄
)

2(𝑡) = (1 − 2𝑡)− 
1

2 

Then, 

𝑀𝑈(𝑡) =
(1 − 2𝑡)− 

𝑛
2  

(1 − 2𝑡)− 
1
2

= (1 − 2𝑡)− 
(𝑛−1)

2
 
 

which is the mgf of chi-squared distribution with 𝑛 − 1 degrees of freedom. Thus, 

(𝑛 − 1)𝑆2

𝜎2
~𝜒𝑛−1

2  
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Theorem 2.9: 

Let 𝑋~𝜒𝑛
2, 𝑌~𝜒𝑚

2 . If  𝑋, 𝑌 are independent then 𝑋 + 𝑌~𝜒𝑛+𝑚
2 . 

Proof: 

Left as an exercise.  

 

Theorem 2.10: 

Let Z denote a random variable that is 𝑍~𝑁(0,1); let 𝑈 denote a random variable that is 𝑈~𝜒𝑘
2 and let Z and U are independent. 

Then,   

𝑇 =
𝑍

√𝑈 𝑘⁄
~𝑡𝑘 

Proof: 

Since are 𝑍 and 𝑈 independent, the joint density of 𝑍 and 𝑈 is given by 

𝑓𝑍,𝑈(𝑧, 𝑢) = 𝑓𝑍(𝑧). 𝑓𝑈(𝑢) 

                                        =
1

√2𝜋
𝑒− 

1

2
𝑧2 1

2
(

𝑘
2

)
Γ(

𝑘

2
)

𝑢
𝑘

2
 −1𝑒− 

𝑢

2  

                                                                                                =
1

2
(

𝑘
2

)
Γ(

𝑘

2
)√2𝜋

𝑢
𝑘

2
 −1𝑒− 

1

2
𝑧2− 

𝑢

2 ,   𝑢 > 0, −∞ < 𝑧 < ∞ 

The one-to-one transformation will be used to obtain the pdf of T. Define the random variables 

𝑇 =
𝑍

√𝑈 𝑘⁄
  and  𝑌 = 𝑈 

Then, we can write  
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𝑧 =
𝑡√𝑦

√𝑘
  and  𝑢 = 𝑦 

Therefore, the Jacobian is  

|𝐽| = |

𝜕𝑧

𝜕𝑡

𝜕𝑧

𝜕𝑦

𝜕𝑢

𝜕𝑡

𝜕𝑢

𝜕𝑦

| = |
√𝑦

√𝑘

𝑡

2√𝑘𝑦

0 1
| = √𝑦

√𝑘
. 

Thus, the joint pdf of T and Y is given by 

𝑓𝑇,𝑌(𝑡, 𝑦) = 𝑓𝑍,𝑈 (
𝑡√𝑦

√𝑘
, 𝑦) . |𝐽| =

1

2
(

𝑘

2
)

Γ (
𝑘

2
) √2𝜋

 𝑦
𝑘

2
 −1

𝑒
−  

𝑦𝑡2

2𝑘
 − 

𝑦

2  
√𝑦

√𝑘
 ,   𝑦 > 0, −∞ < 𝑡 < ∞ 

The marginal pdf of T is then 

𝑓𝑇(𝑡) = ∫ 𝑓𝑇,𝑌(𝑡, 𝑦)
∞

0
𝑑𝑦 =

1

2
𝑘+1

2 Γ(
𝑘

2
)√𝜋𝑘

∫  𝑦
𝑘+1

2
 −1𝑒

− 
𝑦

2
 (1 + 

𝑡2

𝑘
) ∞

0
𝑑𝑦 

By using gamma function, 
Γ(𝛼)

𝛽𝛼
= ∫ 𝑥𝛼−1𝑒−𝛽 𝑥  𝑑𝑥

∞

0
, then we get 

                                    𝑓𝑇(𝑡) =
1

2
𝑘+1

2 Γ(
𝑘

2
)√𝜋𝑘

Γ(
𝑘+1

2
)

(
1 + 

𝑡2

𝑘
2

)

𝑘+1
2

 =
Γ(

𝑘+1

2
)

Γ(
𝑘

2
)√𝜋𝑘

(1 + 
𝑡2

𝑘
)

− 
𝑘+1

2
;    −∞ < 𝑡 < ∞.                       

And this is the pdf of t-distribution with k degrees of freedom. 
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Theorem 2.11: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of size n from a 𝑁(𝜇, 𝜎2), where 𝜎2 is unknown. Then, 

�̅� − 𝜇

𝑆 √𝑛⁄
~𝑡(𝑛−1) 

Proof: 

Since 𝑆2 =
1

𝑛−1
∑ (𝑋𝑖

𝑛
𝑖=1 −�̅�)2, write  

�̅� − 𝜇

𝑆 √𝑛⁄
=

(�̅� − 𝜇) (𝜎 √𝑛⁄ )⁄

√
∑ (𝑋𝑖

𝑛
𝑖=1 −�̅�)2

(𝑛 − 1)𝜎2

 

From Theorem 2.3 and Theorem 2.8, we obtain 

�̅�−𝜇

𝜎 √𝑛⁄
~𝑁(0,1)  and  

∑ (𝑋𝑖
𝑛
𝑖=1 −�̅�)2

𝜎2
~𝜒𝑛−1

2  

Then, from Theorem 2.10, we conclude that 

�̅� − 𝜇

𝑆 √𝑛⁄
~𝑡(𝑛−1) 

Theorem 2.12: 

Let U and V are two independent random variables such that 𝑈~𝜒𝑛
2 and 𝑉~𝜒𝑚

2  . Then, 

𝑈 𝑛⁄

𝑉 𝑚⁄
~𝐹𝑛,𝑚 

where 𝑛 and 𝑚 are the degrees of freedom of F-distribution. 

 



STAT 223                                               Theory of Statistics 1                               Dr. Samah Alghamdi 

 
 

43 
 

2.3 Sampling Distribution of 𝑺𝟐 

The sample variance 𝑆2 is given by 

𝑆2 =
1

𝑛 − 1
∑(𝑋𝑖

𝑛

𝑖=1

−�̅�)2 

From Theorem 2.8, we found that the distribution of 𝑆2 is  

(𝑛 − 1)𝑆2

𝜎2
~𝑋𝑛−1

2  

By using this conclusion, we can calculate the mean and the variance of 𝑆2
 as follows 

𝐸 (
(𝑛 − 1)𝑆2

𝜎2
) = 𝑛 − 1 ⇒ 𝐸(𝑆2) = 𝜎2 

𝑉𝑎𝑟 (
(𝑛 − 1)𝑆2

𝜎2
) = 2(𝑛 − 1)  ⇒  𝑉𝑎𝑟(𝑆2) =

2𝜎4

𝑛 − 1
 

Corollary 2.3:  

The general derivation of the mean and the variance of the sample variance 𝑆2 that does not assume normality are given by 

𝐸(𝑆2) = 𝜎2 and 𝑉𝑎𝑟(𝑆2) =
𝜇4

𝑛
−

𝜎4(𝑛−3)

𝑛(𝑛−1)
 

where 𝜇4 = 𝐸[(𝑋 − 𝜇)4] is the fourth central moment of X. 
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2.4 Sampling Distribution of Order Statistics 

In this section, the concept of order statistic will be defined and some of their properties. 

Order Statistic:  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of size n from a cumulative distribution function 𝐹(𝑥). Then, 𝑌1 ≤  𝑌2 ≤ ⋯ ≤ 𝑌𝑛, where 

𝑌𝑖 are the 𝑋𝑖  arranged in order of increasing degrees and are defined to be the order statistics corresponding to the random 

sample 𝑋1, 𝑋2, … , 𝑋𝑛. 

 

Theorem 2.13: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of size n from a continuous cdf 𝐹(𝑥) and pdf 𝑓(𝑥); let 𝑌1 ≤  𝑌2 ≤ ⋯ ≤ 𝑌𝑛 be the order 

statistics of this random sample. Then, the marginal pdf of any order statistic of order k, say 𝑌𝑘 is given by 

𝑓𝑌𝑘
(𝑦𝑘) =

𝑛!

(𝑘−1)!(𝑛−𝑘)!
[𝐹(𝑦𝑘)]𝑘−1[1 − 𝐹(𝑦𝑘)]𝑛−𝑘𝑓(𝑦𝑘),  for 𝑎 < 𝑦𝑘 < 𝑏. 

 

Corollary 2.4: 

As a result of Theorem 2.13, the marginal pdf of 𝑌1 = 𝑚𝑖𝑛[𝑋1, 𝑋2, … , 𝑋𝑛] and the marginal pdf of 𝑌𝑛 = 𝑚𝑎𝑥[𝑋1, 𝑋2, … , 𝑋𝑛] 

are, respectively, given by 

𝑓𝑌1
(𝑦1) = 𝑛[1 − 𝐹(𝑦1)]𝑛−1𝑓(𝑦1),  for 𝑎 < 𝑦1 < 𝑏 

𝑓𝑌𝑛
(𝑦𝑛) = 𝑛[𝐹(𝑦𝑛)]𝑛−1𝑓(𝑦𝑛),  for 𝑎 < 𝑦𝑛 < 𝑏. 
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Theorem 2.14: 

Let 𝑌1 ≤  𝑌2 ≤ ⋯ ≤ 𝑌𝑛 be the order statistics based on the random sample 𝑋1, 𝑋2, … , 𝑋𝑛 from a continuous distribution with 

pdf 𝑓(𝑥) and support (𝑎, 𝑏). Then, the joint pdf of the order statistics is given by,  

𝑓(𝑦1, 𝑦2, … , 𝑦𝑛) = 𝑛! 𝑓(𝑦1)𝑓(𝑦2) … 𝑓(𝑦𝑛),   for 𝑎 < 𝑦1 <  𝑦2 < ⋯ < 𝑦𝑛 < 𝑏. 

 

Theorem 2.15: 

Let 𝑌1 ≤  𝑌2 ≤ ⋯ ≤ 𝑌𝑛 be the order statistics based on the random sample 𝑋1, 𝑋2, … , 𝑋𝑛. Then, the joint pdf of any two order 

statistics, say 𝑌𝑟 < 𝑌𝑘, is expressed in terms of cdf 𝐹(𝑥) and pdf 𝑓(𝑥) as follows 

𝑓𝑟,𝑘(𝑦𝑟 , 𝑦𝑘) =
𝑛!

(𝑟 − 1)! (𝑘 − 𝑟 − 1)! (𝑛 − 𝑘)!
[𝐹(𝑦𝑟)]𝑟−1[𝐹(𝑦𝑘) − 𝐹(𝑦𝑟)]𝑘−𝑟−1 

                                                  [1 − 𝐹(𝑦𝑘)]𝑛−𝑘𝑓(𝑦𝑟)𝑓(𝑦𝑘), 𝑎 < 𝑦𝑟 < 𝑦𝑘 < 𝑏 

 

Example 2.4: 

Let 𝑌1 < 𝑌2 < 𝑌3 < 𝑌4 denote the order statistics of a random sample of size 4 from a distribution having pdf 

𝑓(𝑥) = 2𝑥, 0 < 𝑥 < 1 

Compute: 

1. 𝑃 (
1

2
< 𝑌3). 

2. The joint distribution of 𝑌1 and 𝑌3. 
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Solution: 

Here 𝐹(𝑥) = 𝑥2, provided that 0 < 𝑥 < 1, so that 

1. 𝑓𝑌3
(𝑦3) =

4!

2!1!
(𝑦3

2)2(1 − 𝑦3
2)(2𝑦3) = 24(𝑦3

5 − 𝑦3
7 ), 0 < 𝑦3 < 1 

Thus, 

𝑃 (
1

2
< 𝑌3) = ∫ 𝑓𝑌3

(𝑦3
1

1

2

) 𝑑𝑦3 = ∫ 24(𝑦3
5 − 𝑦3

7 )
1

1

2

𝑑𝑦3 =
243

256
. 

2. 𝑓1,3(𝑦1, 𝑦3) =
4!

0!1! 1!
[𝑦1

2]0 [𝑦3
2 − 𝑦1

2]1 [1 − 𝑦3
2]1  2𝑦1  2𝑦3  

                             = 96  𝑦1 𝑦3  [𝑦3
2 − 𝑦1

2]  [1 − 𝑦3
2]  
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Chapter 3: Point Estimation 

 

In this chapter, we begin by formally outlining the purpose of statistical inference. We follow this by discussing the problem 

of point estimation of population parameters. We confine our formal developments of specific estimation procedures to 

problems involving one sample. 

Statistical Inference: 

Statistical inference consists of those methods by which one makes inferences or generalizations about a population. There 

are two types of methods, the classic method of estimating a population parameter, whereby inferences are based strictly on 

information obtained from a random sample selected from the population, and the Bayesian method, which utilizes prior 

subjective knowledge about the probability distribution of the unknown parameters in conjunction with the information 

provided by the sample data. Throughout of this chapter and the next, we shall use classical methods to estimate unknown 

population parameters such as the mean and the variance by computing statistics from random samples and applying the 

theory of sampling distributions, much of which was covered in Chapter 2. Bayesian estimation will be discussed in Chapter 

5. 

Statistical inference may be divided into two major areas: estimation and tests of hypotheses, see Figure 3.1. We treat only 

estimation area in this course. Estimation methods divide into two parts, point estimation which we will discuss it in this 

chapter and interval estimation that will discuss in Chapter 4. 

Statistical Inference

Estimation

Point Estimation Interval Estimation

Test of Hypotheses

Figure 3.1 
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Point Estimate and Estimator: 

A point estimate of some population parameter 𝜃 is a single value 𝜃 of an estimator which is a statistic 𝑇. For example, the 

value �̅� of the estimator (statistic) �̅�, computed from a sample of size 𝑛 is a point estimate of the population parameter 𝜇.  

 

3.1 Point Estimation Methods 

This section introduced two different methods to derive the point estimator that are, method of moments estimator (MME) 

and maximum likelihood estimator (MLE). 

 

3.1.1 Method of Moments Estimation 

Let 𝑋1, 𝑋2, … . , 𝑋𝑛 be random sample of size 𝑛 from a distribution with probability distribution 

𝑓(𝑥; 𝜃1, 𝜃2, … . . , 𝜃𝑟), (𝜃1, … , 𝜃𝑟) ∈ Ω. The expectation 𝜇𝑘
′ = 𝐸(𝑋𝑘) is frequently called the kth moment of the distribution, 

𝑘 = 1, 2, 3, ….. The sum 𝑀𝑘 = ∑
𝑋𝑖

𝑘

𝑛

𝑛
𝑖=1  is the kth moment of the sample, 𝑘 = 1, 2, 3, ….. The method of moments 

estimators, �̃�1, �̃�2, … . . , �̃�𝑟, are then the solution of the following rth equations, 

𝜇𝑖
′ = 𝑀𝑖 

for 𝜃1, 𝜃2, … . . , 𝜃𝑟, 𝑖 = 1, 2, … , 𝑟. 
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3.1.2 Maximum Likelihood Estimation 

Maximum likelihood estimation is one of the most important approaches to estimation in all of statistical inference. In this 

section we develop statistical inference (point estimation) based on likelihood methods. We show that this procedure are 

asymptotically optimal under certain conditions (regularity conditions).  

 

Likelihood Function 

Suppose that 𝑋1, … . , 𝑋𝑛 are independent identically distributed (iid) random variables with common probability density 

function (continuous case) or probability mass function (discrete case), 𝑓(𝑥; 𝜃). Then, the likelihood function is given by, 

𝐿(𝜃; 𝑥) = ∏ 𝑓(𝑥𝑖; 𝜃), 𝜃 ∈ Ω𝑛
𝑖=1 . 

where 𝑥 = (𝑥1, … … , 𝑥𝑛). Because we will treat 𝐿 as a function of 𝜃 in this section, we will often write it as 𝐿(𝜃). Actually, 

the log or ln of this function is usually more convenient to work with mathematically. Denote the  log 𝐿(𝜃) by 

log 𝐿(𝜃) = ∑ log 𝑓(𝑥𝑖; 𝜃), 𝜃 ∈ Ω𝑛
𝑖=1 . 

Note that there is no loss of information in using log 𝐿(𝜃) because the log is a one-to-one function. In this section, we will 

generally consider 𝑋 as a random variable. 

 

Maximum Likelihood Estimator: 

Given independent observations 𝑥1, 𝑥2, … . , 𝑥𝑛 from a probability distribution 𝑓(𝑥; 𝜃1, 𝜃2, … . . , 𝜃𝑟), (𝜃1, … , 𝜃𝑟) ∈ Ω, the 

maximum likelihood estimators 𝜃1, 𝜃2, … . . , 𝜃𝑟 are that which maximizes the likelihood function 𝐿(𝜃1, 𝜃2, … . . , 𝜃𝑟; 𝑥). 
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To determine the MLE, we use the following estimating equations (EE). Then, the MLE is the solution of these equations  

𝜕𝐿(𝜃𝑖;𝑥)

𝜕𝜃𝑖
= 0  or  

𝜕 log 𝐿(𝜃𝑖;𝑥)

𝜕𝜃𝑖
= 0,   𝑖 = 1,2, . . , 𝑟 

There is no guarantee that the MLE exists or if it does whether it is unique.  

 

Example 3.1:  

Consider a Poisson distribution with probability mas function 

𝑓(𝑥, 𝜇) =
𝑒−𝜇𝜇𝑥

𝑥!
, 𝑥 = 0, 1, 2, …. 

Supposed that a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 is taken from the distribution. Find:  

1. The method of moments estimator of 𝜇. 

2. The maximum likelihood estimator of 𝜇. 

Solution:  

1. Since the Poisson distribution has one parameter, then we will derive only the first moment of the distribution and the 

first moment of the sample, as following 

𝐸(𝑋) = 𝜇 and 𝑀1 = ∑
𝑋𝑖

𝑛

𝑛
𝑖=1  

Solving the equation, 𝐸(𝑋) = 𝑀1, then the MME is obtained as 

�̃� = ∑
𝑋𝑖

𝑛

𝑛
𝑖=1 = �̅�. 
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2. The likelihood function is  

𝐿(𝑥1, 𝑥2, … . 𝑥𝑛; 𝜇) = ∏ 𝑓𝑛
𝑖=1 (𝑥𝑖 , 𝜇) =

𝑒−𝑛𝜇𝜇∑ 𝑥𝑖
𝑛
𝑖=1

∏ 𝑥𝑖
𝑛
𝑖=1 !

  

Now consider 

log 𝐿(𝑥1, 𝑥2, … . 𝑥𝑛; 𝜇) = −𝑛𝜇 + ∑ 𝑥𝑖
𝑛
𝑖=1 log 𝜇 − log ∏ 𝑥𝑖

𝑛
𝑖=1 !, 

𝜕 log 𝐿(𝑥1,𝑥2,…,𝑥𝑛;𝜇)

𝜕𝜇
= −𝑛 + ∑

𝑥𝑖

𝜇

𝑛
𝑖=1 = 0, 

Solving for �̂�, the maximum likelihood estimator is given by  

�̂� = ∑
𝑋𝑖

𝑛

𝑛
𝑖=1 = �̅�. 

The second derivative of the log-likelihood function is negative, which implies that the solution above indeed is 

maximum. Since 𝜇 is the mean of the Poisson distribution (Chapter 1), the sample average would certainly seem like a 

reasonable estimator. 

 

Example 3.2:  

Suppose 10 rats are used in a biomedical study where they are injected with cancer cells and then given a cancer drug that is 

designed to increase their survival rate. The survival times, in months, are 14, 17, 27, 18, 12, 8, 22, 13, 19, and 12. Assume 

that the exponential distribution applies. 

𝑓(𝑥, 𝛽) = {

1

𝛽
𝑒−𝑥/𝛽 , 𝑥 > 0

0, elsewhere
. 
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Drive the method of moments and the maximum likelihood estimates of the mean survival time. 

Solution:  

To find the method of moments estimate we need to calculate the following moments 

𝐸(𝑋) = 𝛽 and 𝑀1 = ∑
𝑋𝑖

𝑛

10
𝑖=1  

By equating these moments, we get the MME as 

�̃� = ∑
𝑋𝑖

𝑛

10
𝑖=1 = �̅� = 16.2. 

Now, the log-likelihood function for the date, given 𝑛 = 10, is 

log 𝐿(𝑥1, 𝑥2, … . , 𝑥10; 𝛽) = −10 log 𝛽 −
1

𝛽
∑ 𝑋𝑖

10
𝑖=1 , 

Setting 

𝜕 log 𝐿

𝜕𝛽
= −

10

𝛽
+

1

𝛽2
∑ 𝑋𝑖

10
𝑖=1 = 0, 

Applies that 

�̂� = �̅� =
1

10
∑ 𝑋𝑖 =10

𝑖=1 16.2. 

As a result, the estimator of the parameter 𝛽, the population mean, is the sample average �̅�. 
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3.2 Properties of the Estimators 

In this section, we will study several measures of the quality of an estimator, so that we can choose the best. Some of these 

measures tell us the quality of the estimator with small samples, while other measures tell us the quality of the estimator with 

large samples. The last are also known as asymptotic properties of estimators. 

 

Small-sample Properties: 

(n finite or infinite) 

Large-sample Properties: 

(n→) 

Unbiasedness (mean). Asymptotic unbiasedness 

Sufficiency Consistency. 

Complete Asymptotic efficiency 

Efficiency (variance). Asymptotic normality. 

 

3.2.1 Unbiasedness 

Let 𝑋1, … . , 𝑋𝑛 be a random sample from the probability distribution 𝑓(𝑥; 𝜃); and let T denote an estimator of 𝜃. We say that 

a statistic T is an unbiased estimator of 𝜃 if 

𝐸(𝑇 ) = 𝜃, ∀ 𝜃 

If T is not unbiased (that is, 𝐸(𝑇 ) ≠ 𝜃), we say that T  is a biased estimator of 𝜃. 
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3.2.2 Mean Squared Error 

Let 𝑋1, … . , 𝑋𝑛 be a random sample from the probability distribution 𝑓(𝑥; 𝜃). Let a statistic 𝑇 is an estimator of 𝜃. Then, the 

mean squared error of 𝑇, MSE, is given by 

𝑀𝑆𝐸(𝑇 ) = 𝐸[(𝑇 − 𝜃)2] = 𝑉𝑎𝑟(𝑇) + (𝜃 − 𝐸(𝑇 ))
2
 

The term  (𝜃 − 𝐸(𝑇)) is called the bias of the estimator 𝑇 . Note That if 𝑇 is an unbiased estimator of 𝜃, then the MSE is  

𝑀𝑆𝐸(𝑇 ) = 𝑉𝑎𝑟(𝑇) 

Proof:  

𝑀𝑆𝐸(𝑇 ) = 𝐸[(𝑇 − 𝜃)2] = 𝐸 [((𝑇 − 𝐸(𝑇 )) − (𝜃 − 𝐸(𝑇 )))
2

] 

                                                                  = 𝐸 [(𝑇 − 𝐸(𝑇 ))
2

− 2(𝑇 − 𝐸(𝑇 ))(𝜃 − 𝐸(𝑇 )) + (𝜃 − 𝐸(𝑇 ))
2
] 

                                     = 𝐸(𝑇 − 𝐸(𝑇 ))
2

− 2𝐸(𝑇 − 𝐸(𝑇 ))(𝜃 − 𝐸(𝑇 )) + 𝐸(𝜃 − 𝐸(𝑇 ))
2
 

                                                                  = 𝑉𝑎𝑟(𝑇) + [(𝜃 − 𝐸(𝑇))
2

] 

 

Theorem 3.1: 

If 𝑇1 and 𝑇2 are two estimators of 𝜃, then 𝑇1 is better estimator than 𝑇2 if  

𝑀𝑆𝐸(𝑇1 ) ≤ 𝑀𝑆𝐸(𝑇2). 
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3.2.3 Consistency 

Any estimator (statistic) 𝑇 that converges to a parameter 𝜃 is called a consistent estimator of that parameter 𝜃, i.e. 

lim
𝑛→∞

𝑃(|𝑇 − 𝜃| ≥ 휀) = 0,   ∀𝜃. 

 

Theorem 3.2: 

An estimator 𝑇𝑛 based on a sample of size n is consistent for 𝜃 if  

1. lim
𝑛→∞

𝐸(𝑇𝑛) = 𝜃  (asymptotically unbiased) and                      

2. lim
𝑛→∞

𝑉𝑎𝑟(𝑇𝑛) = 0. 

 

3.2.4 Sufficiency 

Let 𝑋1, 𝑋2, … . , 𝑋𝑛 denote a random sample of size 𝑛 from a distribution 𝑓(𝑥;  𝜃), 𝜃 ∈ Ω. Let 𝑇(𝑥) be a statistic whose 

distribution is 𝑓𝑇(𝑡;  𝜃). Then, 𝑇 is a sufficient statistic of 𝜃 if and only if 

∏ 𝑓(𝑥𝑖; 𝜃)𝑛
𝑖=1

𝑓𝑇(𝑡; 𝜃)
 does not depend on 𝜃. 
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Theorem 3.3: (Factorization Theorem) 

Let 𝑋1, 𝑋2, … . , 𝑋𝑛 denote a random sample from a distribution 𝑓(𝑥;  𝜃), 𝜃 ∈ Ω. The statistic 𝑇(𝑥) is a sufficient statistic of 𝜃 

if and only if we can find two nonnegative functions, 𝐾1 and 𝐾2, such that 

∏ 𝑓(𝑥𝑖;  𝜃)𝑛
𝑖=1 = 𝐾1(𝑡, 𝜃). 𝐾2(𝑥1, 𝑥2, … . , 𝑥𝑛),  

where 𝐾2(𝑥1, 𝑥2, … . , 𝑥𝑛) does not depend upon 𝜃. 

 

Theorem 3.4:  

Let 𝑋1, 𝑋2, … . , 𝑋𝑛 denote a random sample from a distribution that has probability distribution 𝑓(𝑥;  𝜃). 𝜃 ∈ Ω. If a sufficient 

statistic 𝑇(𝑥) of 𝜃 exist and if a maximum likelihood estimator 𝜃 of 𝜃 also exists uniquely, then 𝜃 is a function of 𝑇(𝑥). 

 

Example 3.3: 

Let 𝑋1, 𝑋2, … . , 𝑋𝑛 be a random sample has exponential distribution with parameter 𝛽 as following: 

𝑓(𝑥, 𝛽) =
1

𝛽
𝑒−𝑥/𝛽 ,   𝑥 > 0 

Show that the estimator �̅� is an unbiased, consistent and sufficient statistic estimator, then find the mean squared error of 𝛽. 

Solution: 

We know that the mean and the variance of X are 
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𝐸(𝑋) = 𝛽  and  𝑉𝑎𝑟(𝑋) = 𝛽2 

Then, 

𝐸(�̅� ) = 𝐸(𝑋) = 𝛽. 

Thus, the statistic �̅� is an unbiased estimator of 𝛽. Now, we will find the variance of �̅� as 

𝑉𝑎𝑟(�̅� ) =
𝑉𝑎𝑟(𝑋)

𝑛
=

𝛽2

𝑛
. 

Thus,  

lim
𝑛→∞

𝑉𝑎𝑟(�̅� ) = lim
𝑛→∞

(
𝛽2

𝑛
) = 0, 

Therefore, since �̅� is an unbiased estimator of 𝛽 and lim
𝑛→∞

𝑉𝑎𝑟(�̅� ) = 0, from Theorem 3.2, the estimator �̅� is a consistent 

estimator. 

Now, we need to derived the distribution of T which can be found by using the mgf transformation method as  

𝑀�̅�(𝑡) = 𝐸(𝑒 �̅�𝑡) = 𝐸 (𝑒
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
 𝑡) = (𝑀𝑋𝑖

(
𝑡

𝑛
))

𝑛

= (1 −
𝛽

𝑛
𝑡)

−𝑛
  

which is the mgf of 𝐺𝑎𝑚𝑚𝑎 (𝑛,
𝛽

𝑛
), thus the pdf of �̅� is (let 𝑇 = �̅�) 

𝑓𝑇 (𝑡;  𝑛,
𝛽

𝑛
) =

𝑛𝑛

𝛽𝑛Γ(𝑛)
𝑡𝑛−1𝑒

− 
𝑛𝑡

𝛽   ,   𝑡 > 0, 

 ∏ 𝑓(𝑥𝑖;  𝛽)𝑛
𝑖=1 = ∏

1

𝛽
𝑒−𝑥𝑖/𝛽𝑛

𝑖=1 =
1

𝛽𝑛 𝑒− ∑ 𝑥𝑖/𝛽𝑛
𝑖=1   ,  
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∏ 𝑓(𝑥𝑖; 𝛽)𝑛
𝑖=1

𝑓𝑇(𝑡; 𝑛,
𝛽

𝑛
)

=

1

𝛽𝑛𝑒
− ∑ 𝑥𝑖/𝛽

𝑛
𝑖=1  

𝑛𝑛

𝛽𝑛Γ(𝑛)
𝑡𝑛−1𝑒

− 
𝑛𝑡

𝛽

=
Γ(𝑛)

𝑛𝑛
𝑡1−𝑛  

which does not depend on 𝛽, thus we conclude that  𝑇 = �̅� is a sufficient statistic estimator. 

The MSE of �̅� is given by  

𝑀𝑆𝐸(�̅� ) = 𝑉𝑎𝑟(�̅� ) =
𝛽2

𝑛
  (since �̅� is an unbiased estimator). 

Thus, the estimator �̅� is unbiased, consistent and sufficient statistic estimator of 𝛽. Notice that the estimator �̅� is the MME 

and the MLE of 𝛽. 

 

Example 3.4: 

Let 𝑋1, 𝑋2, … . , 𝑋𝑛 be a random sample with Poisson pmf and parameter 𝜇, i.e. 

𝑓(𝑥, 𝜇) =
𝑒−𝜇𝜇𝑥

𝑥!
, 𝑥 = 0, 1, 2, …. 

Show that the MLE of 𝜇 is an unbiased, consistent and sufficient statistic estimator then find the mean squared error of 𝜇. 

Solution: 

From example 3.1, the MLE of 𝜇 is �̅� and we know that the mean and the variance of Poisson distribution with parameter 𝜇 

are given by 

𝐸(𝑋) = 𝑉𝑎𝑟(𝑋) = 𝜇 
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Then, 

𝐸(�̅� ) = 𝐸 (
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
) =

1

𝑛
∑ 𝐸(𝑋𝑖)𝑛

𝑖=1 =
1

𝑛
(𝑛𝜇) = 𝜇. 

which conclude that the MLE of 𝜇 is an unbiased estimator. Thus, 

𝑀𝑆𝐸(�̅� ) = 𝑉𝑎𝑟(�̅� ) = 𝑉𝑎𝑟 (
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
) =

1

𝑛2
∑ 𝑉𝑎𝑟(𝑋𝑖)

𝑛

𝑖=1

=
1

𝑛2
(𝑛𝜇) =

𝜇

𝑛
 

lim
𝑛→∞

𝑉𝑎𝑟(�̅� ) = lim
𝑛→∞

(
𝜇

𝑛
) = 0, 

Therefore, the estimator �̅� is a consistent estimator of 𝜇. 

Now,  

∏ 𝑓(𝑥𝑖 , 𝜇)𝑛
𝑖=1 = ∏

𝑒−𝜇𝜇𝑥𝑖

𝑥𝑖!

𝑛
𝑖=1 =

𝑒−𝑛𝜇𝜇∑ 𝑥𝑖
𝑛
𝑖=1

∏ 𝑥𝑖!𝑛
𝑖=1

=
𝑒−𝑛𝜇𝜇𝑛�̅�

∏ 𝑥𝑖!𝑛
𝑖=1

  

Thus, ∏ 𝑓(𝑥𝑖 , 𝜇)𝑛
𝑖=1  can be written by a product of two functions 𝐾1(𝑡, 𝜃) = 𝑒−𝑛𝜇𝜇𝑛�̅� which depends on the parameter 𝜇 and 

the MLE, 𝑇 = �̅� and 𝐾2(𝑥1, 𝑥2, … . , 𝑥𝑛) =
1

∏ 𝑥𝑖!𝑛
𝑖=1

  which depends only on the random sample. Therefore, we conclude that 

𝑇 = �̅� is a sufficient statistic estimator. 

Thus, the MLE, �̅� is unbiased, consistent and sufficient statistic estimator of 𝜇. 
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Theorem 3.5:  

Let 𝑋1, 𝑋2, … . , 𝑋𝑛 denote a random sample from a distribution 𝑓(𝑥; �́�), �́� = (𝜃1, 𝜃2, … , 𝜃𝑘). Then, statistic �́� =

(𝑇1, 𝑇2, … . , 𝑇𝑘) are joint sufficient statistic of  �́� = (𝜃1, 𝜃2, … , 𝜃𝑘) if and only if   

𝐿(𝑥; �́�) = ∏ 𝑓(𝑥𝑖;  �́�)𝑛
𝑖=1 = 𝐾1(�́�, �́�). 𝐾2(𝑥1, 𝑥2, … . , 𝑥𝑛),  

where 𝐾2(𝑥1, 𝑥2, … . , 𝑥𝑛) does not depend on 𝜃. 

 

Example 3.5: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample drawn from continuous uniform distribution when 𝑥 ∈ (0, 𝜃). Find the following: 

(a) The MLE of 𝜃. 

(b) Prove that 𝑌𝑛 = Maximum(𝑋1, 𝑋2, … , 𝑋𝑛) is a sufficient statistic, asymptotically unbiased and consistent estimator of 

𝜃. 

(c) An unbiased estimator of 𝜃. 

Solution: 

(a) The pmf and cdf of the uniform distribution of 𝑥 ∈ (0, 𝜃) are defined as 

𝑓(𝑥, 𝜃) =
1

𝜃
   and   𝐹(𝑥) =

𝑥

𝜃
 

and the likelihood function is given by 

𝐿(𝑥1, 𝑥2, … , 𝑥𝑛;  𝜃) =
1

𝜃𝑛
 ,   0 < 𝑥𝑖 ≤ 𝜃 
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Then, the maximum of such functions cannot be found by differentiation but by selecting 𝜃 as small as possible. Now, 

each 𝑥𝑖 ≤ 𝜃, in particular 𝑌𝑛 ≤ 𝜃. Thus, the likelihood function attains to the maximum value when 

𝐿(𝑥1, 𝑥2, … , 𝑥𝑛; 𝜃) =
1

(𝑌𝑛)𝑛
 

or 𝜃 = 𝑌𝑛 is the MLE for 𝜃. 

(b)  To find the properties of the estimator 𝑌𝑛, we should first derive the distribution of it as: 

𝑓(𝑦𝑛, 𝜃) =
𝑛

𝜃𝑛
𝑦𝑛

𝑛−1  ,    0 < 𝑦𝑛 ≤ 𝜃 

Thus,  

∏ 𝑓(𝑥𝑖; 𝜃)𝑛
𝑖=1

𝑓(𝑦𝑛,𝜃)
=

1 𝜃𝑛⁄

(𝑛 𝜃𝑛⁄ ) 𝑦
𝑛−1 =

1

𝑛 𝑦𝑛
𝑛−1

 dose not depend on 𝜃 

The estimator 𝑌𝑛 is sufficient statistic for 𝜃. Now, the mean and the variance of are given by 

𝐸(𝑌𝑛) = ∫
𝑛

𝜃𝑛 𝑦
𝑛
𝑛

𝜃

0

𝑑𝑦 =
𝑛 

𝜃𝑛(𝑛 + 1)
𝑦

𝑛
𝑛+1|

0

𝜃

=
𝑛 𝜃

(𝑛 + 1)
 

𝐸(𝑌𝑛
2) = ∫

𝑛

𝜃𝑛 𝑦
𝑛
𝑛+1

𝜃

0

𝑑𝑦 =
𝑛 

𝜃𝑛(𝑛 + 2)
𝑦

𝑛
𝑛+2|

0

𝜃

=
𝑛 𝜃2

(𝑛 + 2)
 

𝑉𝑎𝑟(𝑌𝑛) = 𝐸(𝑌𝑛
2) − (𝐸(𝑌𝑛))

2
=

𝑛 𝜃2

(𝑛 + 2)
−

𝑛2 𝜃2

(𝑛 + 1)2
=

𝑛 𝜃2

(𝑛 + 2)(𝑛 + 1)2
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Thus,  

lim
𝑛→∞

𝐸(𝑌𝑛 ) =
𝑛 𝜃

(𝑛 + 1)
= lim

𝑛→∞

𝑛 𝜃

(𝑛 + 1)
= 𝜃 

lim
𝑛→∞

𝑉𝑎𝑟(𝑌𝑛 ) = lim
𝑛→∞

𝑛 𝜃2

(𝑛 + 2)(𝑛 + 1)2
= 0 

Therefore, 𝑌𝑛 is asymptotically unbiased and consistent estimator of 𝜃. 

(c)  Since 𝐸(𝑌𝑛) =
𝑛 𝜃

(𝑛+1)
, thus we can choose 𝑇 =

(𝑛+1)

𝑛
𝑌𝑛 which is an unbiased estimator for 𝜃 such that  𝐸(𝑇) =

𝐸 (
(𝑛+1)

𝑛
𝑌𝑛) = 𝜃. 

 

Example 3.6:  

Let 𝑋1, 𝑋2, … . , 𝑋𝑛 denote a random sample from a distribution that is 𝑁(𝜇, 𝜎2), −∞ < 𝜇 < ∞, 𝜎2 > 0. Find the following: 

1. Maximum likelihood estimators of 𝜇 and 𝜎2. 

2. Method of moments estimators of 𝜇 and 𝜎2. 

3. Properties of MLE and MME of 𝜇 and 𝜎2. 

Solution: 

1. Maximum likelihood estimators of 𝜇 and 𝜎2: 

The pdf of the 𝑁(𝜇, 𝜎2) is  
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𝑓(𝑥, 𝜇, 𝜎2) =
1

√2𝜋𝜎
𝑒

− 
1

2𝜎2(𝑥−𝜇)2

, 𝑥 > 0 

 The likelihood and the logarithm of the likelihood function may be written in the form 

𝐿(𝜇, 𝜎2; 𝑥1, … . . , 𝑥𝑛) = (√2𝜋𝜎)
− 𝑛

 𝑒
− 

1
2𝜎2 ∑ (𝑥𝑖−𝜇)2𝑛

𝑖=1  

                                                                                 = (2𝜋)− 
𝑛

2  (𝜎2)− 
𝑛

2  𝑒
− 

1

2𝜎2 ∑ (𝑥𝑖−𝜇)2𝑛
𝑖=1  

                      log 𝐿(𝜇, 𝜎2 ; 𝑥1, … . . , 𝑥𝑛) = −
𝑛

2
log(2𝜋) −

𝑛

2
log(𝜎2) −

1

2𝜎2
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1 , 

We observe that we may maximum by differentiation ln 𝐿(𝜇, 𝜎2 ; 𝑥1, … . . , 𝑥𝑛) with respect to 𝜇 and 𝜎2. We have 

𝜕 log 𝐿

𝜕𝜇
=

1

𝜎2
∑ (𝑥𝑖 − 𝜇)𝑛

𝑖=1 , 

                 
𝜕 log 𝐿

𝜕𝜎2
= −

𝑛

2𝜎2
+

1

2𝜎4
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1 , 

If we equate these partial derivatives to zero and solve simultaneously the two equations thus obtained, the solutions for 𝜇 

and 𝜎2 are found to be 

1

𝜎2
∑ (𝑥𝑖 − 𝜇)𝑛

𝑖=1 = 0 ⇒ ∑ 𝑥𝑖 − 𝑛𝜇𝑛
𝑖=1 = 0 ⇒ �̂� = �̅�, 

−
𝑛

2𝜎2
+

1

2𝜎4
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1 = 0 ⇒ ∑ (𝑥𝑖 − 𝜇)2𝑛
𝑖=1 = 𝑛𝜎2, 

⇒ �̂�2 =
∑ (𝑋𝑖−�̂�)2𝑛

𝑖=1

𝑛
=

∑ (𝑋𝑖−�̅� )2𝑛
𝑖=1

𝑛
. 
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2. The method of moments estimators of 𝜇 and 𝜎2: 

Since we want to find MME for two parameters 𝜇 and 𝜎2, then we must equate first two population moments  

𝐸(𝑋) = 𝜇 , 𝐸(𝑋2) = 𝜎2 + 𝜇2 

with first two sample moments  

𝑀1 = ∑
𝑋𝑖

𝑛

𝑛
𝑖=1 , 𝑀2 = ∑

𝑋𝑖
2

𝑛

𝑛
𝑖=1 , 

Then, we get  

�̃� = �̅� , and 

𝜎2 + 𝜇2 = ∑
𝑋𝑖

2

𝑛

𝑛
𝑖=1  ⇒ �̃�2 = ∑

𝑋𝑖
2

𝑛

𝑛
𝑖=1 − (∑

𝑋𝑖

𝑛

𝑛
𝑖=1 )

2
=

∑ (𝑋𝑖−�̅� )2𝑛
𝑖=1

𝑛
 , 

3. Estimators properties: 

a) Unbiasedness: 

𝐸(�̂�) = 𝐸(�̅�) = 𝜇 

Thus, the estimator �̅� is an unbiased estimator of 𝜇. 

𝐸(�̂�2) = 𝐸 (
1

𝑛
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1 ), 

We know that the term ∑ (𝑋𝑖
𝑛
𝑖=1 −�̅�)2 can be written  as 

∑ (𝑋𝑖
𝑛
𝑖=1 −�̅�)2 = ∑ (𝑋𝑖 − 𝜇)2𝑛

𝑖=1 − 𝑛(�̅� − 𝜇)2, 

Then,  
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  𝐸(�̂�2) =
1

𝑛
[∑ 𝐸(𝑋𝑖 − 𝜇)2𝑛

𝑖=1 − 𝑛𝐸(�̅� − 𝜇)2], 

                                                                                 =
1

𝑛
(∑ 𝜎2𝑛

𝑖=1 − 𝑛𝑉𝑎𝑟(�̅�)) 

                                                                                 =
1

𝑛
(𝑛𝜎2 − 𝑛

𝜎2

𝑛
) =

(𝑛−1)𝜎2

𝑛
 

Therefore, �̂�2 is biased estimator of 𝜎2.  

Note: The estimator 𝑆2 =
1

𝑛−1
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1  is an unbiased estimator (Prove). 

b) Mean squared error: 

The MSE of 𝜇 and 𝜎2 are given, respectively, by 

𝑀𝑆𝐸( �̂�) = 𝑀𝑆𝐸(�̅� ) = 𝑉𝑎𝑟(�̅� ) =
𝜎2

𝑛
 

     𝑀𝑆𝐸( �̂�2 ) = 𝑉𝑎𝑟( �̂�2 ) + 𝐸 [(𝜎2 − 𝐸( �̂�2))
2

] 

We need to find the variance of  �̂�2. From Theorem 2.8,   

∑ (𝑋𝑖
𝑛
𝑖=1 −�̅�)2

𝜎2
~χ𝑛−1

2  

Define 𝑆1
2 =

1

𝑛
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1 , now since 𝑋~𝑁(𝜇, 𝜎2), thus we can conclude that 

𝑛 𝑆1
2

𝜎2
=

∑ (𝑋𝑖
𝑛
𝑖=1 −�̅�)2

𝜎2
~χ𝑛−1

2  



STAT 223                                               Theory of Statistics 1                               Dr. Samah Alghamdi 

 
 

66 
 

Therefore,  

𝑉𝑎𝑟 (
𝑛 𝑆1

2

𝜎2
) = 2(𝑛 − 1) ⇒ 𝑉𝑎𝑟( 𝑆1

2) =
2(𝑛 − 1)𝜎4

𝑛2
 

The MSE is, then given by 

𝑀𝑆𝐸( �̂�2 ) =
2(𝑛 − 1)𝜎4

𝑛2
+ (𝜎2 −

(𝑛 − 1)𝜎2

𝑛
)

2

 

       =
2(𝑛−1)𝜎4

𝑛2
+ (

𝜎2

𝑛
)

2

=
(2𝑛−1)𝜎4

𝑛2
 

b) Consistency: 

The estimator �̅� is a consistent estimator of 𝜇 because 

          1. It is an unbiased estimator of 𝜇. 

          2. lim
𝑛→∞

𝑉𝑎𝑟(�̅�) = lim
𝑛→∞

𝜎2

𝑛
= 0. 

The estimator  �̂�2 of 𝜎2 is also consistent estimator because 

1. lim
𝑛→∞

𝐸( �̂�2) = lim
𝑛→∞

[
(𝑛−1)𝜎2

𝑛
] = lim

𝑛→∞
[𝜎2 −

𝜎2

𝑛
] = 𝜎2 (asymptotically unbiased). 

          2. lim
𝑛→∞

𝑉𝑎𝑟( �̂�2) = lim
𝑛→∞

[
2(𝑛−1)𝜎4

𝑛2
] = lim

𝑛→∞
[

2𝜎4

𝑛
−

2𝜎2

𝑛2
] = 0. 

d) Sufficiency: 
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     The likelihood function of 𝑁(𝜇, 𝜎2) is obtained as 

 ∏ 𝑓(𝑥𝑖;  𝜇, 𝜎2)𝑛
𝑖=1 = (√2𝜋𝜎)

− 𝑛
 𝑒

− 
1

2𝜎2 ∑ (𝑋𝑖−𝜇)2𝑛
𝑖=1  

                                              = (√2𝜋𝜎)
− 𝑛

 𝑒
− 

1

2𝜎2[∑ (𝑋𝑖
𝑛
𝑖=1 −�̅�)2+𝑛(�̅�−𝜇)2]

 

                                  = (√2𝜋𝜎)
− 𝑛

 𝑒
− 

1

2𝜎2[𝑛𝑆1
2+𝑛(�̅�−𝜇)2]

 

Let 𝑇1 = �̅�, 𝑇2 = 𝑆1
2. Then, we can write 

 ∏ 𝑓(𝑥𝑖;  𝜇, 𝜎2)𝑛
𝑖=1 = 𝐾1(𝑇1, 𝑇2;  𝜇, 𝜎2). 𝐾2(𝑋) 

where 𝐾1(𝑇1, 𝑇2, 𝜇, 𝜎2) = (√2𝜋𝜎)
− 𝑛

 𝑒
− 

1

2𝜎2[𝑛𝑇2+𝑛(𝑇1−𝜇)2]
 and 𝐾2(𝑋) = 1.  

Therefore, (𝑇1, 𝑇2) are jointly sufficient statistic of (𝜇, 𝜎2). 

 

Exponential Family: 

A probability distribution 𝑓(𝑥, 𝜃) is said to be a member of the exponential family if it can be written of the form 

𝑓(𝑥, 𝜃) = 𝑎(𝜃)𝑏(𝑥)𝑒𝑐(𝜃)𝑑(𝑥) 

where, 1. 𝑎(𝜃) and 𝑐(𝜃) are functions of parameter 𝜃. 

             2. 𝑏(𝑥) and 𝑑(𝑥) are functions of the random sample X. 
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Example 3.7: 

If 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample, determine whether the following probability distribution are member of exponential 

family or not: 

1. 𝐸𝑥𝑝𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (
1

𝜃
). 

2. 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝). 

Solution: 

1. The pdf of the exponential distribution with parameter 
1

𝜃
 is defined as 

𝑓(𝑥; 𝜃) = 𝜃𝑒−𝜃𝑥,   𝑥 ≥ 0 

It is a member of exponential family where 𝑎(𝜃) = 𝜃, 𝑏(𝑥) = 1, 𝑐(𝜃) = −𝜃, 𝑑(𝑥) = 𝑥. 

2. The pmf of Bernoulli distribution with parameter p is  

𝑓(𝑥; 𝑝) = 𝑝𝑥𝑞1−𝑥, 𝑥 = 0, 1. 

which can be written as 

𝑓(𝑥; 𝑝) = 𝑒𝑥 𝐿𝑛𝑝𝑒(1−𝑥) 𝐿𝑛𝑞 =  𝑒𝐿𝑛𝑞 + 𝑥 (𝐿𝑛𝑝−𝐿𝑛𝑞) 

Therefore, the Bernoulli distribution is a member of exponential family where 𝑎(𝑝) = 𝑒𝐿𝑛𝑞 , 𝑏(𝑥) = 1, 𝑐(𝑝) = 𝐿𝑛𝑝 −

𝐿𝑛𝑞, 𝑑(𝑥) = 𝑥. 
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3.2.5 Minimal Sufficiency 

A sufficient statistic T is a minimal sufficient statistic if, for any other sufficient statistic U, T is a function of U. 

 

Theorem 3.6: 

If 𝑋1, 𝑋2, … , 𝑋𝑛be random sample with probability distribution 𝑓(𝑥, 𝜃) and let 𝑇(𝑥) be a statistic of the random sample. 

Suppose for any random sample 𝑌1, 𝑌2, … , 𝑌𝑛 from probability distribution 𝑓(𝑦, 𝜃) such that 𝑇(𝑦) is a statistic and the ratio 

∏ 𝑓(𝑥𝑖,𝜃)𝑛
𝑖=1

∏ 𝑓(𝑦𝑖,𝜃)𝑛
𝑖=1

 does not depend on 𝜃 if and only if 𝑇(𝑥) = 𝑇(𝑦). 

Then, 𝑇(𝑥) is a minimal sufficient statistic estimator of 𝜃. 

 

Example 3.8: 

If 𝑋1, 𝑋2, … , 𝑋𝑛 are independent identically random sample from 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃). Show that 𝑇 = ∑ 𝑋𝑖
𝑛
𝑖=1  is a minimal sufficient 

statistic for 𝜃. 

Solution: 

The pmf of 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃) is given as 

𝑓(𝑥, 𝜃) =
𝑒−𝜃𝜃𝑥

𝑥!
, 𝑥 = 0, 1, 2, …. 

Then, for any random sample 𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃) 
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∏ 𝑓(𝑥𝑖,𝜃)𝑛
𝑖=1

∏ 𝑓(𝑦𝑖,𝜃)𝑛
𝑖=1

=
𝑒−𝑛 𝜃 𝜃∑ 𝑥𝑖

𝑛
𝑖=1 ∏ 𝑥𝑖!

𝑛
𝑖=1⁄

𝑒−𝑛 𝜃 𝜃∑ 𝑦𝑖
𝑛
𝑖=1 ∏ 𝑦𝑖!

𝑛
𝑖=1⁄

=
 𝜃∑ 𝑥𝑖

𝑛
𝑖=1 −∑ 𝑦𝑖

𝑛
𝑖=1

∏ 𝑥𝑖!
𝑛
𝑖=1 ∏ 𝑦𝑖!

𝑛
𝑖=1⁄

 , 

which does not depend on 𝜃 iff ∑ 𝑥𝑖
𝑛
𝑖=1 = ∑ 𝑦𝑖

𝑛
𝑖=1 .This implies that 𝑇 = ∑ 𝑋𝑖

𝑛
𝑖=1  is a minimal sufficient statistic for 𝜃. 

 

Theorem 3.7:  

If 𝑋1, 𝑋2, … , 𝑋𝑛be random sample from exponential family, 

𝑓(𝑥, 𝜃) = 𝑎(𝜃)𝑏(𝑥)𝑒𝑐(𝜃)𝑑(𝑥) 

Then, 𝑇 = ∑ 𝑑(𝑥𝑖
𝑛
𝑖=1 ) is a minimal sufficient statistic estimator of 𝜃. 

 

Theorem 3.8: 

If 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from  

𝑓(𝑥, �́�) = 𝑎(�́�)𝑏(𝑥)𝑒∑ 𝑐𝑗(�́�)𝑑𝑗(𝑥)𝑘
𝑗=1  

where �́�  vector of parameters, �́� = (𝜃1, 𝜃2, … , 𝜃𝑘). Then,  

𝑇𝑗 = ∑ 𝑑𝑗(𝑥𝑖)𝑛
𝑖=1 ,    𝑗 = 1, 2, … , 𝑘; 

are jointly minimal sufficient statistic estimators of �́� = (𝜃1, 𝜃2, … , 𝜃𝑘). 
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Example 3.9: 

Find a minimal sufficient statistic for the probability distribution in Example 3.7. 

Solution: 

Since 𝑑(𝑥) = 𝑥 for the exponential and Bernoulli distributions, then the statistic 𝑇 = ∑ 𝑋𝑖
𝑛
𝑖=1  is a minimal sufficient statistic 

for both distributions. 

 

3.2.6 Completeness 

A sufficient statistic 𝑇(𝑥) of 𝜃 is called complete if for any function 𝑔(𝑇) such that  

𝐸(𝑔(𝑇)) = 0,  for all 𝜃 implies that 𝑔(𝑇) = 0,  for all T. 

 

Theorem 3.9: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from 𝑓(𝑥, 𝜃) such that 

𝑓(𝑥, 𝜃) = 𝑎(𝜃)𝑏(𝑥)𝑒𝑐(𝜃)𝑑(𝑥) 

Then, 𝑇 = ∑ 𝑑(𝑥𝑖
𝑛
𝑖=1 ) is complete minimal sufficient statistic of 𝜃. 

 

Examples 3.10: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛  be a random sample from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝). Show that 𝑇 = ∑ 𝑋𝑖
𝑛
𝑖=1  is a complete sufficient statistic for 𝑝. 
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Solution: 

From Example 3.7, we found that Bernoulli distribution is a member of exponential family with 𝑑(𝑥) = 𝑥. Therefore, by 

using Theorem 3.9, 𝑇 = ∑ 𝑋𝑖
𝑛
𝑖=1  is complete minimal sufficient statistic for 𝑝. 

Now, we want to use the definition of completeness to get the same result: 

Since 𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), then 

𝑀𝑇(𝑠) = 𝐸(𝑒𝑡𝑠) = 𝐸(𝑒𝑠 ∑ 𝑋𝑖
𝑛
𝑖=1 ) = (𝑀𝑋1

(𝑠))
𝑛

= (𝑞 + 𝑝𝑒𝑡)𝑛, 

which is the mgf of 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝). Thus, the pdf of T is  

𝑓(𝑡) = (
𝑛

𝑡
) 𝑝𝑡𝑞𝑛−𝑡 , 𝑡 = 0, 1, … , 𝑛  

Suppose for any function of T , 𝑔(𝑇), that 

𝐸(𝑔(𝑇)) = ∑ 𝑔(𝑇)(𝑛
𝑡
)𝑝𝑡𝑞𝑛−𝑡𝑛

𝑡=0 = 𝑞𝑛 ∑ 𝑔(𝑇)(𝑛
𝑡
) (

𝑝

𝑞
)

𝑡
𝑛
𝑡=0 = 0  

   ⇒ 𝑔(0)(𝑛
0

) (
𝑝

𝑞
)

0
+ 𝑔(1)(𝑛

1
) (

𝑝

𝑞
) + ⋯ + 𝑔(𝑛)(𝑛

𝑛
) (

𝑝

𝑞
)

𝑛
= 0 

 ⇒ 𝑔(0) = 𝑔(1) = ⋯ = 𝑔(𝑛) = 0 ⇒ 𝑔(𝑇) = 0, for all T. 

Thus, T is complete sufficient statistic for 𝑝. 
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Example 3.11:  

Let 𝑋1, 𝑋2, … , 𝑋𝑛~𝜃𝑒−𝜃𝑥, 𝑥 ≥ 0. Show that 𝑇 = ∑ 𝑋𝑖
𝑛
𝑖=1  is a complete sufficient statistic for 𝜃. 

Solution: 

Since 𝑋~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (
1

𝜃
), then the distribution of 𝑇 = ∑ 𝑋𝑖

𝑛
𝑖=1  is given as  

𝑀𝑇(𝑠) = 𝐸(𝑒𝑡𝑠) = 𝐸(𝑒𝑠 ∑ 𝑥𝑖
𝑛
𝑖=1 ) = (𝑀𝑋1

(𝑠))
𝑛

= (
𝜃

𝜃−𝑡
)

𝑛
, 

which is the mgf of 𝐺𝑎𝑚𝑚𝑚𝑎 (𝑛,
1

𝜃
). Thus, the pdf of T is 

𝑓𝑇(𝑡) =
𝜃𝑛

Γ(𝑛)
𝑡𝑛−1𝑒−𝜃𝑡 , 𝑡 > 0 

Then,                                                            𝐸(𝑔(𝑇)) = ∫ 𝑔(𝑡)
𝜃𝑛

Γ(𝑛)

∞

0
𝑡𝑛−1𝑒−𝜃𝑡𝑑𝑡 = 0 

Only 𝑔(𝑡)
𝜃𝑛

Γ(𝑛)
𝑡𝑛−1 = 0 ⟺ 𝑔(𝑡) = 0, for all T. 

Therefore, T is complete sufficient statistic for 𝜃. 

 

 

 

 



STAT 223                                               Theory of Statistics 1                               Dr. Samah Alghamdi 

 
 

74 
 

Score Function 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from probability distribution 𝑓(𝑥, 𝜃), then the score function, 𝑢(𝜃), is the derivative of 

the log-likelihood function with respect to the parameter 𝜃: 

𝑢( 𝜃) =
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃) 

Properties of Score Function: 

1. Mean 

𝑬[𝒖( 𝜽)] = 𝟎 

Proof: 

   𝐸[𝑢( 𝜃)] = 𝐸 [
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃)] 

                   = ∫ … ∫ 𝐿(𝑥, 𝜃) (
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃))  𝑑𝑥𝑛 … 𝑑𝑥1𝑥𝑛𝑥1

 

                             = ∫ … ∫ 𝐿(𝑥, 𝜃) (
𝜕𝐿(𝑥,𝜃)

𝜕𝜃

𝐿(𝑥,𝜃)
)  𝑑𝑥𝑛 … 𝑑𝑥1𝑥𝑛𝑥1

 

                             =
𝜕

𝜕𝜃
∫ … ∫ 𝐿(𝑥, 𝜃) 𝑑𝑥𝑛 … 𝑑𝑥1𝑥𝑛𝑥1

=
𝜕

𝜕𝜃
(1) = 0 
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2. Variance (Fisher Information) 

𝑽𝒂𝒓[𝒖( 𝜽)] = 𝑬 [(
𝝏

𝝏𝜽
𝐥𝐨𝐠𝑳(𝒙, 𝜽))

𝟐

] 

 

Proof: 

𝑉𝑎𝑟[𝑢( 𝜃)] = 𝐸 [(𝑢( 𝜃))
2

] − (𝐸[𝑢( 𝜃)])2 

Since 𝐸[𝑢( 𝜃)] = 0, then 

𝑉𝑎𝑟[𝑢( 𝜃)] = 𝐸 [(𝑢( 𝜃))
2

] = 𝐸 [(
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃))

2

] 

Fisher Information  

The Fisher information, 𝐼𝑋(𝜃) or 𝐼𝑛(𝜃), of a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 about 𝜃 is defined as  

𝐼𝑋(𝜃) = 𝑉𝑎𝑟 [
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃)] = 𝐸 [(

𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃))

2

] 

Properties of Fisher Information: 

1. 𝑰𝑿(𝜽) = −𝑬 [
𝝏𝟐

𝝏𝜽𝟐
𝐥𝐨𝐠𝑳(𝒙, 𝜽)] 

Proof: 

Let 𝐿 = 𝐿(𝑥, 𝜃), 𝐿′ =
𝜕

𝜕𝜃
𝐿(𝑥, 𝜃) and 𝐿′′ =

𝜕2

𝜕𝜃2
𝐿(𝑥, 𝜃), then 
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𝜕2

𝜕𝜃2
log𝐿(𝑥, 𝜃) =

𝜕

𝜕𝜃
[

𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃)] =

𝜕

𝜕𝜃
[

𝐿′

𝐿
] 

                                     =
𝐿′′𝐿−(𝐿′)2

𝐿2
=

𝐿′′

𝐿
−

(𝐿′)2

𝐿2
 

      𝐸 [
𝜕2

𝜕𝜃2
log𝐿(𝑥, 𝜃)] = 𝐸 [

𝐿′′

𝐿
−

(𝐿′)2

𝐿2
] = 𝐸 [

𝐿′′

𝐿
] − 𝐸 [(

𝐿′

𝐿
)

2

] 

The first term in the right side can be written as 

                           𝐸 [
𝐿′′

𝐿
] = ∫ … ∫

𝐿′′

𝐿
𝐿 𝑑𝑥𝑛 … 𝑑𝑥1𝑥𝑛𝑥1

 

                                      =
𝜕2

𝜕𝜃2 ∫ … ∫ 𝐿(𝑥, 𝜃) 𝑑𝑥𝑛 … 𝑑𝑥1𝑥𝑛
=

𝜕2

𝜕𝜃2
(1)

𝑥1
= 0 

The second term is obtained as 

                      𝐸 [(
𝐿′

𝐿
)

2

] = 𝐸 [(
𝜕

𝜕𝜃
𝐿(𝑥,𝜃)

𝐿(𝑥,𝜃)
)

2

] = 𝐸 [(
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃))

2

]  

Then,  

      𝐸 [
𝜕2

𝜕𝜃2
log𝐿(𝑥, 𝜃)] = 𝐸 [

𝐿′′

𝐿
] − 𝐸 [(

𝐿′

𝐿
)

2

] = 0 − 𝐸 [(
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃))

2

] 

This implies that,  

                           𝐼𝑋(𝜃) = 𝐸 [(
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃))

2

] = −𝐸 [
𝜕2

𝜕𝜃2
log𝐿(𝑥, 𝜃)] 

2. 𝑰𝑿(𝜽) = 𝒏 𝑰(𝜽) 

where 𝐼(𝜃) is the Fisher information at one observation defined as 

𝐼(𝜃) = 𝑉𝑎𝑟 [
𝜕

𝜕𝜃
log 𝑓(𝑥; 𝜃)] = 𝐸 [(

𝜕

𝜕𝜃
l𝑜𝑔𝑓(𝑥, 𝜃))

2

] = −𝐸 [
𝜕2

𝜕𝜃2
l𝑜𝑔𝑓(𝑥, 𝜃)] 
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Proof:  

𝐼𝑋(𝜃) = 𝑉𝑎𝑟 [
𝜕

𝜕𝜃
l𝑜𝑔𝐿(𝑥, 𝜃)] = 𝑉𝑎𝑟 [

𝜕

𝜕𝜃
∑ log 𝑓(𝑥𝑖; 𝜃)𝑛

𝑖=1 ] = ∑ 𝑉𝑎𝑟 [
𝜕

𝜕𝜃
Log 𝑓(𝑥𝑖; 𝜃)]𝑛

𝑖=1 = 𝑛 𝐼(𝜃). 

 

3. If X and Y are two independent random samples from probability distributions 𝑓(𝑥, 𝜃) and 𝑓(𝑦, 𝜃), respectively, then 

𝑰𝑿,𝒀(𝜽) = 𝑰𝑿(𝜽) + 𝑰𝒀(𝜽) 

Proof: 

        𝐼𝑋,𝑌(𝜃) = 𝐸 [(
𝜕

𝜕𝜃
log𝐿(𝑥, 𝑦, 𝜃))

2

]   

                     = 𝐸 [(
𝜕

𝜕𝜃
log(𝐿(𝑥, 𝜃)𝐿(𝑦, 𝜃)))

2

] (Since X and Y are independent) 

           = 𝐸 [(
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃) +

𝜕

𝜕𝜃
log𝐿(𝑦, 𝜃))

2

]   

           = 𝐸 (
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃))

2

+ 𝐸 (
𝜕

𝜕𝜃
log𝐿(𝑦, 𝜃))

2

+ 2𝐸 (
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃)) 𝐸 (

𝜕

𝜕𝜃
log𝐿(𝑦, 𝜃))  

                      = 𝐸 (
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃))

2

+ 𝐸 (
𝜕

𝜕𝜃
log𝐿(𝑦, 𝜃))

2

 

                      = 𝐼𝑋(𝜃) + 𝐼𝑌(𝜃) 
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Examples 3.12: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from normal distribution with parameters 0 and 𝜃. Find the Fisher information of 𝜃, 

𝐼𝑋(𝜃). 

Solution: 

We know that the normal distribution when 𝜇 = 0 and 𝜎2 = 𝜃 is given by 

𝑓(𝑥, 𝜃) =
1

√2𝜋𝜃
𝑒− 

𝑥2

2𝜃 , −∞ < 𝑥 < ∞    

The likelihood and the log-likelihood functions are then obtained as 

𝐿( 𝑥, 𝜃) = (2𝜋𝜃)− 
𝑛
2   𝑒− 

1
2𝜃

∑ 𝑥𝑖
2𝑛

𝑖=1  

                    log 𝐿(𝑥, 𝜃) = −
𝑛

2
log(2𝜋) −

𝑛

2
log(𝜃) −

1

2𝜃
∑ 𝑥𝑖

2𝑛
𝑖=1  

1. 𝐼𝑋(𝜃) = 𝑉𝑎𝑟 [
𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃)] 

From the log-likelihood function, we get the first partial derivative with respect to 𝜃 as 

𝜕

𝜕𝜃
log𝐿(𝑥, 𝜃) = −

𝑛

2𝜃
+

∑ 𝑥𝑖
2𝑛

𝑖=1

2𝜃2
  

𝐼𝑋(𝜃) = 𝑉𝑎𝑟 [−
𝑛

2𝜃
+

∑ 𝑋𝑖
2𝑛

𝑖=1

2𝜃2
] =

1

4𝜃2
𝑉𝑎𝑟 [

∑ 𝑋𝑖
2𝑛

𝑖=1

𝜃
]  

Note that:  
∑ 𝑋𝑖

2𝑛
𝑖=1

𝜃
= ∑ 𝑍𝑖

2𝑛
𝑖=1 ~𝜒𝑛

2, then 𝑉𝑎𝑟 [
∑ 𝑋𝑖

2𝑛
𝑖=1

𝜃
] = 2𝑛, and this implies that 

𝐼𝑋(𝜃) =
2𝑛

4𝜃2
=

𝑛

2𝜃2
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2. 𝐼𝑋(𝜃) = 𝑛𝐼(𝜃) 

log 𝑓(𝑥, 𝜃) = −
1

2
log(2𝜋) −

1

2
log(𝜃) −

𝑥2

2𝜃
  

𝜕

𝜕𝜃
log𝑓(𝑥, 𝜃) = −

1

2𝜃
+

𝑥2

2𝜃2
  

𝐼𝑋(𝜃) = 𝑛 𝐼(𝜃) = 𝑛 𝑉𝑎𝑟 [
𝜕

𝜕𝜃
l𝑜𝑔𝑓(𝑥, 𝜃)] = 𝑛 𝑉𝑎𝑟 [−

1

2𝜃
+

𝑋2

2𝜃2
]  

=
𝑛

4𝜃2
 𝑉𝑎𝑟 [

𝑋2

𝜃
]  

Since, 
𝑋2

𝜃
= 𝑍2~𝜒1

2, then 𝑉𝑎𝑟 [
𝑋2

𝜃
] = 2, therefore we get 

𝐼𝑋(𝜃) =
𝑛

2𝜃2
  

3. 𝐼𝑋(𝜃) = −𝐸 [
𝜕2

𝜕𝜃2
log𝐿(𝑥, 𝜃)] 

First, we should find the second partial derivative of log-likelihood function with respect to 𝜃, which is equal to 

𝜕2

𝜕𝜃2
log𝐿(𝑥, 𝜃) =

𝑛

2𝜃2
−

∑ 𝑥𝑖
2𝑛

𝑖=1

𝜃3
   

𝐼𝑋(𝜃) = −𝐸 [
𝜕2

𝜕𝜃2
log𝐿(𝑥, 𝜃)] = −𝐸 [

𝑛

2𝜃2
−

∑ 𝑋𝑖
2𝑛

𝑖=1

𝜃3
] = −

𝑛

2𝜃2
+

∑ 𝐸(𝑋𝑖
2)𝑛

𝑖=1

𝜃3
 

   From definition of variance,  

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − (𝐸(𝑋))
2

⇒ 𝐸(𝑋2) = 𝑉𝑎𝑟(𝑋) + (𝐸(𝑋))
2

= 𝜃 + 0 = 𝜃 

Then, 

𝐼𝑋(𝜃) = −
𝑛

2𝜃2
+

𝑛𝜃

𝜃3
=

𝑛

2𝜃2
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Regularity Conditions: 

(i) log𝐿(𝑥, 𝜃) or log 𝑓(𝑥, 𝜃) is differentiable for all 𝜃. 

(ii) 
𝜕

𝜕𝜃
∫ … ∫ 𝐿(𝑥; 𝜃)

𝑥𝑛𝑥1
𝑑𝑥𝑛 … 𝑑𝑥1 = ∫ … ∫

𝜕

𝜕𝜃𝑥𝑛𝑥1
𝐿(𝑥; 𝜃)𝑑𝑥𝑛 … 𝑑𝑥1  

(iii) 
𝜕

𝜕𝜃
∫ … ∫ 𝑡(𝑥1𝑥𝑛𝑥1

, … , 𝑥𝑛) 𝐿(𝑥; 𝜃) 𝑑𝑥𝑛 … 𝑑𝑥1 

                 = ∫ … ∫ 𝑡(𝑥1𝑥𝑛𝑥1
, … , 𝑥𝑛) 

𝜕

𝜕𝜃
𝐿(𝑥; 𝜃) 𝑑𝑥𝑛 … 𝑑𝑥1  

(iv) 0 < 𝐸 [
𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)]

2
< ∞ ,  for all 𝜃. 

 

3.2.7 Minimum Variance Unbiased Estimator (MVUE) 

If a statistic 𝑇 be an estimator for a parameter 𝜏(𝜃), is called to be a MVUE for 𝜏(𝜃)  if  

1. 𝐸(𝑇) = 𝜏(𝜃) unbiased estimator of 𝜏(𝜃). 

2. 𝑉𝑎𝑟(𝑇) has minimum variance compared to any other unbiased estimator. 

 

Theorem 3.10: Cramér-Rao Lower Bound (CRLB) 

Let 𝑋1, … , 𝑋𝑛 be a random sample from 𝑓(𝑥, 𝜃) and 𝑇(𝑋1, … , 𝑋𝑛) be an unbiased estimator of 𝜏(𝜃) such that 𝜏(𝜃) is 

differentiable function of 𝜃. Then, under the regularity conditions, the minimum variance of any unbiased estimator T is  

𝑉𝑎𝑟(𝑇) ≥
(𝜏′(𝜃))

2

𝑛𝐼(𝜃)
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Proof: 

Since T is an unbiased estimator of 𝜏(𝜃) [i. e. 𝐸(𝑇 ) = 𝜏(𝜃)]. Then, under the regularity conditions, we get 

 �́�(𝜃) =
𝜕

𝜕𝜃
𝜏(𝜃) =

𝜕

𝜕𝜃
 𝐸(𝑇 ) =

𝜕

𝜕𝜃
∫ … ∫ 𝑡(𝑥1 , … , 𝑥𝑛)𝐿(𝑥; 𝜃) 𝑑𝑥1 … 𝑑𝑥𝑛  

           

 �́�(𝜃) = ∫ … ∫ 𝑡(𝑥1 , … , 𝑥𝑛) 
𝜕

𝜕𝜃
𝐿(𝑥; 𝜃) 𝑑𝑥1 … 𝑑𝑥𝑛  

          = ∫ … ∫ 𝑡(𝑥1 , … , 𝑥𝑛) [
𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)] 𝐿(𝑥; 𝜃)𝑑𝑥1 … 𝑑𝑥𝑛 

          = ∫ … ∫ 𝑡(𝑥1 , … , 𝑥𝑛) [
𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)] 𝐿(𝑥; 𝜃)𝑑𝑥1 … 𝑑𝑥𝑛 − ∫ … ∫ 𝜏(𝜃) [

𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)] 𝐿(𝑥; 𝜃) 𝑑𝑥1 … 𝑑𝑥𝑛 

          = ∫ … ∫[𝑡(𝑥1, … . , 𝑥𝑛) − 𝜏(𝜃)] [
𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)] 𝐿(𝑥; 𝜃)𝑑𝑥1 … 𝑑𝑥𝑛 

          = 𝐸 [[𝑡(𝑥1, … . , 𝑥𝑛) − 𝜏(𝜃)] [
𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)]] 

Now consider the covariance of T and score function as following 

𝐶𝑜𝑣 [𝑇,
𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)] = 𝐸 [𝑇

𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)] − 𝐸[𝑇]𝐸 [

𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)] = �́�(𝜃)  

Now by the Cauchy-Schwarz inequality, we get 

|𝐶𝑜𝑣 [𝑇,
𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)]|

2

≤ 𝑉𝑎𝑟[𝑇]𝑉𝑎𝑟 [
𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)] 

Then, 
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[�́�(𝜃)]2 ≤ 𝐸[𝑡(𝑥1, … . , 𝑥𝑛) − 𝜏(𝜃)]2 𝐸 [
𝜕

𝜕𝜃
log 𝐿(𝑥; 𝜃)]

2

 

or                                                    𝑉𝑎𝑟[𝑇] ≥
[�́�(𝜃)]2

𝑛𝐼(𝜃)
 

 

Remark: If there exists an unbiased estimator T of 𝜏(𝜃) that its variance attains the 𝐶𝑅𝐿𝐵 =
[�́�(𝜃)]2

𝑛𝐼(𝜃)
, then T is an MVUE 

estimator of 𝜏(𝜃). 

 

3.2.8 Efficiency 

An unbiased estimator T of 𝜏(𝜃) is called an efficient estimator of 𝜏(𝜃) if and only if  

𝑒𝑓𝑓(𝑇) =
𝐶𝑅𝐿𝐵

𝑉𝑎𝑟(𝑇)
= 1 

 

 

Theorem 3.11: 

If 𝑇1 and 𝑇2 are both unbiased estimators of 𝜏(𝜃), then the efficiency of 𝑇1 and 𝑇2 is defined as follows 

𝑒𝑓𝑓(𝑇1, 𝑇2) =
𝑉𝑎𝑟(𝑇1)

𝑉𝑎𝑟(𝑇2)
= {

> 1 ,    𝑇2 is more efficient than 𝑇1

1 ,  𝑇1 and 𝑇2 are equally efficient 
< 1 ,    𝑇1 is more efficient than 𝑇2

 

 

 



STAT 223                                               Theory of Statistics 1                               Dr. Samah Alghamdi 

 
 

83 
 

Asymptotic Efficiency  

An unbiased estimator T of 𝜏(𝜃) is called an asymptotically efficient estimator of 𝜏(𝜃) if  

lim
𝑛→∞

𝑒𝑓𝑓(𝑇) = lim
𝑛→∞

𝐶𝑅𝐿𝐵

𝑉𝑎𝑟(𝑇)
= 1 

Example 3.13:  

If 𝑋1, 𝑋2, … , 𝑋𝑛  has an exponential distribution with parameter 
1

𝜆
. Let 𝑇1 and 𝑇2 are unbiased estimates of 𝜆 and 

1

𝜆
, respectively. 

Find CRLB of 𝑇1 and 𝑇2. 

Solution:  

The pdf of the exponential distribution with parameter 
1

𝜆
 is given by 

𝑓(𝑥, 𝜆) = 𝜆𝑒−𝜆𝑥 , 𝑥 > 0 

Then, the likelihood and the log-likelihood functions are obtained as 

𝐿(𝑥, 𝜆) = ∏ 𝑓(𝑥𝑖 , 𝜆)𝑛
𝑖=1 = 𝜆𝑛𝑒−𝜆 ∑ 𝑥𝑖

𝑛
𝑖=1   

log 𝐿 (𝑥, 𝜆) = ∑ log 𝑓(𝑥𝑖 , 𝜆)𝑛
𝑖=1 = 𝑛 log 𝜆 − 𝜆 ∑ 𝑥𝑖

𝑛
𝑖=1   

Taking the first and second partial derivatives of the log-likelihood function with respect to 𝜆, we get 

𝜕

𝜕𝜆
log𝐿(𝑥, 𝜆) =

𝑛

𝜆
− ∑ 𝑥𝑖

𝑛

𝑖=1

 

𝜕2

𝜕𝜆2
log𝐿(𝑥, 𝜆) = −

𝑛

𝜆2
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Then, the Fisher information of 𝜆 is derived as  

𝐼𝑋(𝜆) = −𝐸 [
𝜕2

𝜕𝜆2
log𝐿(𝑥, 𝜆)] =

𝑛

𝜆2
 

Now, we want to find the CRLB for 𝑇1 and 𝑇2 of the two cases when 𝜏(𝜆) = 𝜆 and when 𝜏(𝜆) =
1

𝜆
.  

The case when 𝜏(𝜆) = 𝜆 ⇒ 𝜏′(𝜆) = 1, then the CRLB for 𝑇1 is 

𝐶𝑅𝐿𝐵(𝑇1) =
(𝜏′(𝜆))

2

𝐼𝑋(𝜆)
=

1

𝑛 𝜆2⁄
=

𝜆2

𝑛
 

The second case, when 𝜏(𝜆) =
1

𝜆
⇒ 𝜏′(𝜆) = −

1

𝜆2
, then the CRLB for 𝑇2 is  

𝐶𝑅𝐿𝐵(𝑇2) =
(𝜏′(𝜆))

2

𝐼𝑋(𝜆)
=

(−1 𝜆2⁄ )2

𝑛 𝜆2⁄
=

1

𝑛𝜆2
 

Note that 𝐶𝑅𝐿𝐵(𝑇2) < 𝐶𝑅𝐿𝐵(𝑇1) and 

𝑉𝑎𝑟(�̅� ) =
∑ 𝑉𝑎𝑟(𝑋𝑖)𝑛

𝑖=1

𝑛2
=

1

𝑛2

𝑛

𝜆2
=

1

𝑛𝜆2
 

Then, �̅�  is an efficient estimator of 
1

𝜆
 such that 

𝑒𝑓𝑓(�̅� ) =
𝐶𝑅𝐿𝐵(�̅� )

𝑉𝑎𝑟(�̅� )
= 1 

Remark: �̅�  is the MLE of 
1

𝜆
. 
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Example 3.14:  

Let 𝑋1, 𝑋2, … , 𝑋𝑛~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆). Find CRLB of the MLE of 𝜆 and prove it is an efficient estimator. 

Solution:  

From Example 3.1 and Example 3.4, we get the MLE of 𝜆 is 𝑇 = �̅� and it is an unbiased estimator of 𝜆 where 

𝜏(𝜆) = λ ⇒ 𝜏′(𝜆) = 1 

The pdf of Poisson distribution with parameter 𝜆 is defined as 

𝑓(𝑥, 𝜆) =
𝑒−𝜆 𝜆𝑥

𝑥!
, 𝑥 = 0, 1, 2, … 

The logarithm function of the pdf and the derivatives are  

log 𝑓(𝑥, 𝜆) = 𝑥 log 𝜆 − 𝜆 − log 𝑥! 

𝜕 log 𝑓(𝑥, 𝜆)

𝜕𝜆
=

𝑥

𝜆
− 1 

𝜕2 log 𝑓(𝑥, 𝜆)

𝜕𝜆2
= −

𝑥

𝜆2
 

Then, the Fisher information is given as 

𝐼𝑋(𝜆) = 𝑛𝐼(𝜆) = −𝑛𝐸 [
𝜕2 log 𝑓(𝑥, 𝜆)

𝜕𝜆2
] = 𝑛𝐸 (

𝑋

𝜆2
) =

𝑛

𝜆
 

where 𝐸(𝑋) = 𝜆. Therefore, the CRLB is equal to 
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𝐶𝑅𝐿𝐵 =
(𝜏′(𝜆))

2

𝐼𝑋(𝜆)
=

1
𝑛
𝜆

=
𝜆

𝑛
 

Note that 𝑉𝑎𝑟(�̅�) =
𝜆

𝑛
  and thus the variance of the MLE equals to the CRLB. Therefore, the MLE, �̅�, is an efficient estimator 

of 𝜆. 

 

Example 3.15:  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from 𝑁(𝜇, 𝜎2). Show that,  

(i) �̅� is an efficient estimator of 𝜇. 

(ii) 𝑆2 =
1

𝑛−1
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1  is an asymptotically efficient of 𝜎2. 

(iii) 𝑆1
2 =

1

𝑛
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1  is an asymptotically efficient of 𝜎2. 

(iv) 𝑆2
2 =

1

𝑛
∑ (𝑋𝑖 − 𝜇)2𝑛

𝑖=1  is an efficient estimator of 𝜎2 if 𝜇 is known. 

Solution: 

The pdf of the 𝑁(𝜇, 𝜎2), the likelihood and the log-likelihood functions are  

                               𝑓(𝑥, 𝜇, 𝜎2) =
1

√2𝜋𝜎
𝑒

− 
1

2𝜎2 (𝑥−𝜇)2

, 𝑥 > 0 

                                   𝐿(𝜇, 𝜎2) = (2𝜋)− 
𝑛

2  (𝜎2)− 
𝑛

2  𝑒
− 

1

2𝜎2 ∑ (𝑥𝑖−𝜇)2𝑛
𝑖=1   

                             log 𝐿(𝜇, 𝜎2) = −
𝑛

2
log(2𝜋) −

𝑛

2
log(𝜎2) −

1

2𝜎2
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1 , 
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The first and second partial derivatives with respect to 𝜇 and 𝜎2 are  

𝜕 log 𝐿

𝜕𝜇
=

1

𝜎2
∑ (𝑥𝑖 − 𝜇)𝑛

𝑖=1 ,       
𝜕 log 𝐿

𝜕𝜎2
= −

𝑛

2𝜎2
+

1

2𝜎4
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1   

𝜕2 log 𝐿

𝜕𝜇2
= −

𝑛

𝜎2
 ,                   

𝜕2 log 𝐿

𝜕𝜎4
=

𝑛

2𝜎4
−

1

𝜎6
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1  

Now, to study the efficiency, we need to determine the unbiasedness, CRLB and the variance: 

(i) The efficiency of �̅�:  

From Example 3.6, we get  

𝐸(�̅�) = 𝜇 and 𝑉𝑎𝑟(�̅� ) =
𝜎2

𝑛
 

i.e. �̅� is an unbiased estimator of 𝜇. Now, the Fisher information of 𝜇 is given as 

𝐼𝑋(𝜇) = −𝐸 [
𝜕2

𝜕𝜇2
log𝐿(𝜇, 𝜎2)] =

𝑛

𝜎2
 

Thus, the CRLB of �̅� is 

𝐶𝑅𝐿𝐵(�̅�) =
(𝜏′(𝜇))

2

𝐼𝑋(𝜇)
=

𝜎2

𝑛
 

which is equal to the variance of �̅�, then we conclude that the estimator �̅� is an efficient of 𝜇. Notice that, �̅� is the MLE 

of 𝜇. 
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(ii) The efficiency of 𝑆2 =
1

𝑛−1
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1 : 

𝐸( 𝑆2) = 𝐸 [
1

𝑛 − 1
∑(𝑋𝑖 − �̅�)2

𝑛

𝑖=1

] 

We know from Section 2.3, when 𝑋𝑖~𝑁(𝜇, 𝜎2), 𝑖 = 1,2, . . , 𝑛, then 

(𝑛 − 1)𝑆2

𝜎2
=

∑ (𝑋𝑖
𝑛
𝑖=1 −�̅�)2

𝜎2
~𝑋𝑛−1

2  

and 𝐸(𝑆2) = 𝜎2, 𝑉𝑎𝑟(𝑆2) =
2𝜎4

𝑛−1
. Thus, 𝑆2 is an unbiased estimator of 𝜎2. The Fisher information of 𝜎2 is given by 

𝐼𝑋(𝜎2) = −𝐸 [
𝜕2

𝜕𝜎4
log𝐿(𝜇, 𝜎2)] = −

𝑛

2𝜎4
+

1

𝜎6
∑ 𝐸(𝑋𝑖 − 𝜇)2

𝑛

𝑖=1

 

From Corollary 2.2, when 𝑋𝑖~𝑁(𝜇, 𝜎2), 𝑖 = 1,2, . . , 𝑛, then  

∑ (
𝑋𝑖−𝜇

𝜎
)

2
𝑛
𝑖=1 ~𝜒𝑛

2   and  𝐸 [∑ (
𝑋𝑖−𝜇

𝜎
)

2
𝑛
𝑖=1 ] = 𝑛. 

Therefore,  

𝐼𝑋(𝜎2) = −
𝑛

2𝜎4
+

𝑛

𝜎4
=

𝑛

2𝜎4
 

Now, the CRLB is obtained as 

𝐶𝑅𝐿𝐵( 𝑆2) =
(𝜏′(𝜎2))

2

𝐼𝑋(𝜎2)
=

1

𝑛 2𝜎4⁄
=

2𝜎4

𝑛
 

𝑒𝑓𝑓( 𝑆2) =
𝐶𝑅𝐿𝐵(𝑆2)

𝑉𝑎𝑟(𝑆2)
=

2𝜎4 𝑛⁄

2𝜎4 𝑛 − 1⁄
=

𝑛 − 1

𝑛
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lim
𝑛→∞

𝑒𝑓𝑓 (𝑆2) = lim
𝑛→∞

𝑛 − 1

𝑛
= lim

𝑛→∞
(1 −

1

𝑛
) = 1 

Then, 𝑆2 is asymptotically efficient of 𝜎2. 

(iii)  The efficiency of 𝑆1
2 =

1

𝑛
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1 : 

 From Example 3.6,  

𝐸( 𝑆1
2) =

(𝑛−1)𝜎2

𝑛
  and  𝑉𝑎𝑟( 𝑆1

2) =
2(𝑛−1)𝜎4

𝑛2
 

i.e.  𝑆1
2 is not an unbiased estimator of 𝜎2. The CRLB of  𝑆1

2 is obtained as 

𝐶𝑅𝐿𝐵( 𝑆1
2) =

(𝜏′(𝜎2))
2

𝐼𝑋(𝜎2)
=

1

𝑛 2𝜎4⁄
=

2𝜎4

𝑛
 

𝑒𝑓𝑓 ( 𝑆1
2) =

𝐶𝑅𝐿𝐵( 𝑆1
2)

𝑉𝑎𝑟( 𝑆1
2)

=
2𝜎4 𝑛⁄

2(𝑛 − 1)𝜎4 𝑛2⁄
=

𝑛

𝑛 − 1
 

lim
𝑛→∞

𝑒𝑓𝑓 ( 𝑆1
2) = lim

𝑛→∞

𝑛

𝑛 − 1
= lim

𝑛→∞

1

1 −
1
𝑛

= 1 

Then  𝑆1
2 is an asymptotically efficient of 𝜎2. 

(iv) The efficiency of 𝑆2
2 =

1

𝑛
∑ (𝑋𝑖 − 𝜇)2𝑛

𝑖=1 : 

From Corollary 2.2, when 𝑋𝑖~𝑁(𝜇, 𝜎2), 𝑖 = 1,2, . . , 𝑛, then  

∑ (
𝑋𝑖−𝜇

𝜎
)

2
𝑛
𝑖=1 ~𝜒𝑛

2   
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Therefore, the mean and the variance of 𝑆2
2 are calculated as follows 

𝐸 [∑ (
𝑋𝑖 − 𝜇

𝜎
)

2𝑛

𝑖=1

] = 𝑛 ⇒ 𝐸 [
𝑛𝑆2

2

𝜎2
] = 𝑛 ⇒

𝑛

𝜎2
𝐸(𝑆2

2) = 𝑛 ⟹ 𝐸(𝑆2
2) = 𝜎2 

𝑉𝑎𝑟 [∑ (
𝑋𝑖 − 𝜇

𝜎
)

2𝑛

𝑖=1

] = 2𝑛 ⟹ 𝑉𝑎𝑟 [
𝑛𝑆2

2

𝜎2
] = 2𝑛 ⟹

𝑛2

𝜎4
𝑉𝑎𝑟[𝑆2

2] = 2𝑛 ⟹ 𝑉𝑎𝑟(𝑆2
2) =

2𝜎4

𝑛
 

Now, the CRLD and the efficiency of  𝑆2
2 are  

𝐶𝑅𝐿𝐵( 𝑆2
2) =

(𝜏′(𝜎2))
2

𝐼𝑋(𝜎2)
=

1

𝑛 2𝜎4⁄
=

2𝜎4

𝑛
 

𝑒𝑓𝑓(𝑆2
2) =

𝐶𝑅𝐿𝐵( 𝑆2
2)

𝑉𝑎𝑟( 𝑆2
2)

=
2𝜎4 𝑛⁄

2𝜎4 𝑛⁄
= 1 

Thus, 𝑆2
2 is an efficient estimator of 𝜎2. 

 

Theorem 3.12: (Rao-Blackwell Theorem) 

Let 𝑋1, … , 𝑋𝑛 be a random sample from 𝑓(𝑥, 𝜃), 𝜃 may be a vector of parameters; and let 𝑆1 = 𝑠1(𝑋1, … , 𝑋𝑛), … , 𝑆𝑘 =

𝑠𝑘(𝑋1, … , 𝑋𝑛) be a set of jointly sufficient statistics. Let the statistic 𝑇 = 𝑡(𝑋1, … , 𝑋𝑛) be an unbiased estimator of 𝜏(𝜃). 

Define,  

𝑇′ = 𝐸(𝑇|𝑆1, … , 𝑆𝑘)  

Then, 
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1. 𝑇′ is a statistic and it is a function of the sufficient statistics 𝑆1, … , 𝑆𝑘. Write 𝑇′ = 𝑡′(𝑆1, … , 𝑆𝑘) . 

2. 𝑇′ is an unbiased estimator of 𝜏(𝜃); 𝐸(𝑇′) = 𝜏(𝜃).  

3. 𝑉𝑎𝑟(𝑇′) ≤ 𝑉𝑎𝑟(𝑇) for all 𝜃, and 𝑉𝑎𝑟(𝑇′) = 𝑉𝑎𝑟(𝑇) iff 𝑇′ = 𝑇. 

Proof: 

1. 𝑆1, … . , 𝑆𝑘 are sufficient statistics; so, the conditional distribution of any statistic 𝑇, given 𝑆1, … . , 𝑆𝑘 is independent of 𝜃, 

hence 𝑇′ = 𝐸[𝑇|𝑆1, … . , 𝑆𝑘] is independent of 𝜃, and so 𝑇′ is a statistic which is obviously a function of 𝑆1, … . , 𝑆𝑘.  

2.  𝐸[𝑇′] = 𝐸[𝐸[𝑇|𝑆1, … . , 𝑆𝑘]] = 𝐸[𝑇] = 𝜏(𝜃) [using 𝐸[𝑌] = 𝐸[𝐸[𝑌|𝑋]]].  

3.  we can write 

𝑀𝑆𝐸[𝑇] = 𝑉𝑎𝑟[𝑇] = 𝐸[(𝑇 − 𝐸[𝑇′])2] = 𝐸[(𝑇 − 𝑇′ + 𝑇′ − 𝐸[𝑇′])2] 

                                                          = 𝐸[(𝑇 − 𝑇′)2] + 2𝐸[(𝑇 − 𝑇′)(𝑇′ − 𝐸[𝑇′])] + 𝐸[(𝑇′ − 𝐸[𝑇′])2] 

                                                          = 𝐸[(𝑇 − 𝑇′)2] + 2𝐸[(𝑇 − 𝑇′)(𝑇′ − 𝐸[𝑇′])] + 𝑉𝑎𝑟[𝑇′] 

But 

                   𝐸[(𝑇 − 𝑇′)(𝑇′ − 𝐸[𝑇′])] = 𝐸[𝐸[(𝑇 − 𝑇′)(𝑇′ − 𝐸[𝑇′])|𝑆1, … . , 𝑆𝑘]] 

and 

𝐸[(𝑇 − 𝑇′)(𝑇′ − 𝐸[𝑇′])|𝑆1 = 𝑠1; … ; 𝑆𝑘 = 𝑠𝑘] = {𝑡′(𝑠1, … . , 𝑠𝑘) − 𝐸[𝑇′]}𝐸[(𝑇 − 𝑇′)|𝑆1 = 𝑠1; … . ;  𝑆𝑘 = 𝑠𝑘] 

                                                              = {𝑡′(𝑠1, … . , 𝑠𝑘) − 𝐸[𝑇′]}(𝐸[𝑇|𝑆1 = 𝑠1; … ; 𝑆𝑘 = 𝑠𝑘]  − 𝐸[𝑇′|𝑆1 = 𝑠1; … ; 𝑆𝑘 = 𝑠𝑘]) 

                                                              = {𝑡′(𝑠1, … . , 𝑠𝑘) − 𝐸[𝑇′]}[𝑡′(𝑠1, … , 𝑠𝑘) − 𝑡′(𝑠1, … , 𝑠𝑘)] = 0 

and therefore 
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𝑉𝑎𝑟[𝑇] = 𝐸[(𝑇 − 𝑇′)2] + 𝑉𝑎𝑟[𝑇′] ≥ 𝑉𝑎𝑟[𝑇′] 

Note that 𝑉𝑎𝑟[𝑇] > 𝑉𝑎𝑟[𝑇′] unless 𝑇 equals 𝑇′ with probability 1. 

 

Example 3.16: 

Let 𝑋1, … , 𝑋𝑛 be a random sample from the Bernoulli(𝑝)  

𝑓(𝑥; 𝑝) = 𝑝𝑥𝑞1−𝑥, 𝑥 = 0 or 1 

and let 𝑇 = 𝑋1 be an unbiased estimate of 𝑝. Find a MVUE of 𝑝. 

Solution: 

Since, 𝑇 = 𝑋1 is an unbiased estimator such that 𝐸(𝑇) = 𝐸(𝑋1) = 𝑝. From Example 3.9, we get 𝑆 = ∑ 𝑋𝑖
𝑛
𝑖=1  is a sufficient 

statistic. According to the Rao-Blackwell Theorem 

𝑇′ = 𝐸(𝑇|𝑆) = 𝐸(𝑋1| ∑ 𝑋𝑖
𝑛
𝑖=1 ) = ∑ 𝑋1 𝑃(𝑋1| ∑ 𝑋𝑖

𝑛
𝑖=1 )

1

𝑥1=0

 

                                                                           = (0)𝑃(𝑋1 = 0|∑ 𝑋𝑖 = 𝑆𝑛
𝑖=1 ) + (1)𝑃(𝑋1 = 1|∑ 𝑋𝑖 = 𝑆𝑛

𝑖=1 ) 

                                                                           =
𝑃(𝑋1=1,∑ 𝑋𝑖=𝑆𝑛

𝑖=1 )

𝑃(∑ 𝑋𝑖=𝑆𝑛
𝑖=1 )

  =
𝑃(𝑋1=1)𝑃(∑ 𝑋𝑖=𝑆−1𝑛

𝑖=2 )

𝑃(∑ 𝑋𝑖=𝑆𝑛
𝑖=1 )

 

                                                                          =
𝑝 (𝑛−1

𝑆−1) 𝑝𝑆−1 𝑞𝑛−𝑆

(𝑛
𝑆) 𝑝𝑆 𝑞𝑛−𝑆

   =
(𝑛−1)!

(𝑆−1)!(𝑛−𝑆)!

𝑆!(𝑛−𝑆)!

𝑛!
  =

𝑆

𝑛
= �̅� 
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Thus, 𝑇′ = �̅� is a statistic and a function of a sufficient statistic S and an unbiased estimator of p where 𝐸(𝑇′) = 𝐸(�̅�) = 𝑝. 

Therefore, 𝑇′ = �̅� is a MVUE of 𝑝 with minimum variance such that 

𝑉𝑎𝑟(𝑇′) = 𝑉𝑎𝑟(�̅�) = 𝑉𝑎𝑟 (
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
) =

1

𝑛2
𝑛𝑝𝑞 =

𝑝𝑞

𝑛
 

While,                                                  𝑉(𝑇) = 𝑉(𝑋1) = 𝑝𝑞 

Thus,                                                   𝑉(𝑇′) < 𝑉(𝑇) 

 

Theorem 3.13: (Lehman-Scheffé Theorem) 

Let 𝑋1, … , 𝑋𝑛 be a random sample from 𝑓(𝑥, 𝜃), 𝜃 may be a vector of parameters (𝜃1, … , 𝜃𝑘). If 𝑆 = 𝑠(𝑆1, … , 𝑆𝑘) is a complete 

sufficient statistic and if 𝑇∗ = 𝑡∗(𝑆) a function of S, is an unbiased estimator of 𝜏(𝜃). Then, 𝑇∗is UMVUE of 𝜏(𝜃). 

Proof: 

Let 𝑇′ be any unbiased estimator of 𝜏(𝜃) which is a function of 𝑆;  that is, 𝑇′ = 𝑡′(𝑆). Then 𝐸[𝑇∗ − 𝑇′] = 0 for all 𝜃 ∈ ∅, 

and 𝑇∗ − 𝑇′ is a function of 𝑆; so by completeness of 𝑆, 𝑃[𝑡∗(𝑆) = 𝑡′(𝑆)] = 1 for all 𝜃 ∈ ∅. Hence there is only one unbiased 

estimator of 𝜏(𝜃) that is function of 𝑆. Now let 𝑇 be any unbiased estimator of 𝜏(𝜃). 𝑇∗ must be equal to 𝐸[𝑇|𝑆] since 𝐸[𝑇|𝑆] 

is an unbiased estimator of 𝜏(𝜃) depending on 𝑆. By Theorem 3.11,  𝑉𝑎𝑟[𝑇∗] ≤ 𝑉𝑎𝑟[𝑇] for all 𝜃 ∈ ∅; so 𝑇∗is an UMVUE. 
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Example 3.17:  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from the 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙( 𝛽),  

𝑓(𝑥, 𝛽) =
1

𝛽
𝑒−𝑥/𝛽 ,   𝑥 > 0 

Find UMVUE of  𝛽 and 
1

𝛽
. 

Solution: 

Since the exponential distribution is a member of the exponential family, then 𝑆 = ∑ 𝑋𝑖
𝑛
𝑖=1  is a complete sufficient statistic. 

Thus, we need to derive two functions of S that are unbiased estimators of 𝛽 and 
1

𝛽
. 

1. Put 𝑇1
∗ = 𝑐𝑆, c is a constant such that 

𝐸(𝑇1
∗) = 𝛽 ⇒ 𝐸(𝑐𝑆) = 𝛽 ⇒ 𝑐 𝐸(∑ 𝑋𝑖

𝑛
𝑖=1 ) = 𝛽 ⇒ 𝑐 𝑛𝛽 = 𝛽 ⇒ 𝑐 =

1

𝑛
  

Thus, 𝑇1
∗ = 𝑐𝑆 = �̅�  is a UMVUE of 𝛽. 

2. Put 𝑇2
∗ =

𝐶

𝑆
 , c is a constant such that 

𝐸(𝑇2
∗) = 𝐸 (

𝑐

𝑆
) = 𝑐 𝐸 (

1

∑ 𝑋𝑖
𝑛
𝑖=1

) =
1

𝛽
  

Since, 𝑆 = ∑ 𝑋𝑖
𝑛
𝑖=1 ~ 𝐺𝑎𝑚𝑚𝑎 (𝑛, 𝛽), then  

𝐸 (
1

𝑆
) = ∫

1

𝑠

1

Γ(𝑛)𝛽𝑛
𝑠𝑛−1𝑒−𝑠 𝛽⁄

∞

0

𝑑𝑠 =
Γ(𝑛 − 1)𝛽𝑛−1

Γ(𝑛)𝛽𝑛
=

1

(𝑛 − 1)𝛽
 

Thus,     

𝐸(𝑇2
∗) = 𝑐 𝐸 (

1

𝑆
) = 𝑐

1

(𝑛 − 1)𝛽
=

1

𝛽
⇒ 𝑐 = 𝑛 − 1 
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Therefore, 𝑇2
∗ =

𝐶

𝑆
=

𝑛−1

∑ 𝑋𝑖
𝑛
𝑖=1

  is a UMVUE of 
1

𝛽
. 

 

3.3 Properties of Maximum Likelihood Estimators  

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample with probability distribution 𝑓(𝑥, 𝜃). If 𝑀𝐿𝐸 = 𝜃 of 𝜃 and under certain regularity 

conditions, then 𝜃 satisfies the following properties: 

1. Invariance: Let ℎ(𝜃) be a function of 𝜃. Then, 𝑇 = ℎ(𝜃) is the MLE of ℎ(𝜃). 

2. Sufficiency: If a sufficient statistic exists for 𝜃, the MLE of 𝜃 must be a function of it. 
3. Asymptotically unbiased: lim

𝑛→∞
𝐸(�̂�) = 𝜃 

4. Consistency: lim
𝑛→∞

𝑃(|𝜃 − 𝜃| ≥ 휀) = 0 , ∀𝜃 

5. Asymptotic efficiency: If a most efficient unbiased estimator T of θ exists (i.e. T is unbiased and its variance is equal 

to the CRLB). Then, the maximum likelihood method of estimation will produce it. 

6. Asymptotic normality: The MLE 𝜃 of 𝜃 has asymptotic normal distribution such that 

√𝑛(�̂� − 𝜃)
𝑑
→ 𝑁 (0,

1

𝐼(𝜃)
) , 𝑛 → ∞  where 𝑉𝑎𝑟(𝜃) = 𝐶𝑅𝐿𝐵(𝜃) =

1

𝑛𝐼(𝜃)
. 

In general, if �̂�(𝜃) be the MLE of 𝜏(𝜃), then �̂�(𝜃) has distribution as 

√𝑛(�̂�(𝜃) − 𝜏(𝜃))
𝑑
→ 𝑁 (0,

(𝜏′(𝜃))
2

𝐼(𝜃)
)  or  �̂�(𝜃)

𝑑
→ 𝑁 (𝜏(𝜃),

(𝜏′(𝜃))
2

𝑛𝐼(𝜃)
). 
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3.4 Location and Scale Invariance  

3.4.1 Location Invariance: 

Location Parameter: 

Let 𝑓(𝑥) be any pdf. The family of pdfs 𝑓(𝑥 − 𝜇) indexed by parameter 𝜇 is called the location family with standard pdf 

𝑓(𝑥) and 𝜇 is the location parameter for the family. 

Equivalently, 𝜇 is a location parameter for 𝑓(𝑥) iff the distribution 𝑓(𝑥 − 𝜇) does not depend on 𝜇.  

Location Invariant: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of a distribution with pdf (or pmf); 𝑓(𝑥, 𝜇); 𝜇 ∈ Ω.  

• An estimator 𝑡(𝑥1, … , 𝑥𝑛) is defined to be a location equivariant iff 

𝑡(𝑥1 + 𝑐, … , 𝑥𝑛 + 𝑐) = 𝑡(𝑥1, … , 𝑥𝑛) + 𝑐 for all values c. 

• An estimator 𝑡(𝑥1, … , 𝑥𝑛) is defined to be a location invariant iff 

𝑡(𝑥1 + 𝑐, … , 𝑥𝑛 + 𝑐) = 𝑡(𝑥1, … , 𝑥𝑛) for all values c. 

Example 3.18: 

• If 𝑋~𝑁(𝜃, 1), then the distribution of  𝑋 − 𝜃 ~𝑁(0,1) is independent of 𝜃 ⟶ 𝜃 is a location parameter. 

•  Let 𝑡(𝑥1, … , 𝑥𝑛) = �̅�. Then,  

𝑡(𝑥1 + 𝑐, … , 𝑥𝑛 + 𝑐) =
𝑥1+𝑐+⋯+𝑥𝑛+𝑐

𝑛
=

𝑥1+⋯+𝑥𝑛+𝑛𝑐

𝑛
  

                                   = �̅� + 𝑐 = 𝑡(𝑥1, … , 𝑥𝑛) + 𝑐  
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⟶  �̅� is location equivariant. 

• Let 𝑡(𝑥1, … , 𝑥𝑛) = 𝑆2 =
1

𝑛−1
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1 . Then,  

𝑡(𝑥1 + 𝑐, … , 𝑥𝑛 + 𝑐) =
1

𝑛−1
∑ (𝑋𝑖 + 𝑐 − (�̅� + 𝑐))

2𝑛
𝑖=1  = 𝑆2 = 𝑡(𝑥1, … , 𝑥𝑛)  

⟶  𝑆2 location invariant. 

 

3.4.2 Scale Invariant: 

Scale Parameter: 

Let 𝑓(𝑥) be any pdf. The family of pdfs 
1

𝜎
𝑓 (

𝑥

𝜎
) for 𝜎 > 0, indexed by parameter 𝜎 is called the scale family with standard 

pdf 𝑓(𝑥) and 𝜎 is the scale parameter for the family. 

Equivalently, 𝜎 is a scale parameter for 𝑓(𝑥) iff the distribution 
1

𝜎
𝑓 (

𝑥

𝜎
) does not depend on 𝜎.  

Scale Invariant: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of a distribution with pdf (or pmf); 𝑓(𝑥, 𝜎); 𝜎 ∈ Ω.  

• An estimator 𝑡(𝑥1, … , 𝑥𝑛) is defined to be a scale equivariant iff 

𝑡(𝑐 𝑥1, … , 𝑐 𝑥𝑛) = 𝑐 𝑡(𝑥1, … , 𝑥𝑛) for all values c. 

• An estimator 𝑡(𝑥1, … , 𝑥𝑛) is defined to be a scale invariant iff 

𝑡(𝑐 𝑥1, … , 𝑐 𝑥𝑛) = 𝑡(𝑥1, … , 𝑥𝑛) for all values c. 
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Example 3.19: 

• If 𝑋~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (
1

𝜃
), then the distribution 

1

𝜃
𝑓 (

𝑥

𝜃
)  is independent of 𝜃 ⟶ 𝜃 is a scale parameter. 

•  Let 𝑡(𝑥1, … , 𝑥𝑛) = �̅�. Then,  

𝑡(𝑐 𝑥1, … , 𝑐 𝑥𝑛) =
𝑐 (𝑥1+⋯+𝑥𝑛)

𝑛
= 𝑐 �̅� = 𝑐 𝑡(𝑥1, … , 𝑥𝑛)  

⟶  �̅� is scale equivariant. 

• Let 𝑡(𝑥1, … , 𝑥𝑛) =
𝑋1

𝑋1+𝑋2
. Then,  

𝑡(𝑐 𝑥1, … , 𝑐 𝑥𝑛) =
𝑐 𝑋1

𝑐 𝑋1+𝑐 𝑋2
=

𝑋1

𝑋1+𝑋2
=  𝑡(𝑥1, … , 𝑥𝑛)  

⟶  
𝑋1

𝑋1+𝑋2
 is scale invariant. 

 

3.4.3 Location-Scale Invariant: 

Location-Scale Parameter: 

Let 𝑓(𝑥) be any pdf. The family of pdfs 
1

𝜎
𝑓 (

𝑥−𝜇

𝜎
) for 𝜎 > 0, indexed by parameter (𝜇, 𝜎) is called the location-scale family 

with standard pdf 𝑓(𝑥) and 𝜇 is a location parameter and 𝜎 is the scale parameter for the family. 

Equivalently, 𝜇 is a location parameter and 𝜎 is a scale parameter for 𝑓(𝑥) iff the distribution 
1

𝜎
𝑓 (

𝑥−𝜇

𝜎
) does not depend on 

𝜇 and 𝜎.  
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Location-Scale Invariant: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of a distribution with pdf (or pmf); 𝑓(𝑥, 𝜎); 𝜎 ∈ Ω.  

• An estimator 𝑡(𝑥1, … , 𝑥𝑛) is defined to be a location-scale equivariant iff 

𝑡(𝑐 𝑥1 + 𝑑, … , 𝑐 𝑥𝑛 + 𝑑) = 𝑐 𝑡(𝑥1, … , 𝑥𝑛) + 𝑑 for all values 𝑐 > 0 and d. 

• An estimator 𝑡(𝑥1, … , 𝑥𝑛) is defined to be a location-scale invariant iff 

𝑡(𝑐 𝑥1 + 𝑑, … , 𝑐 𝑥𝑛 + 𝑑) = 𝑡(𝑥1, … , 𝑥𝑛) for all values 𝑐 > 0 and d. 

Example 3.20: 

• If 𝑋~𝑁(𝜇. 𝜎2), then the distribution of 𝑌 =
𝑋−𝜇

𝜎
 ~𝑁(0,1) is independent of 𝜇 and 𝜎2 ⟶ 𝜇 and 𝜎2 are location-scale 

parameters. 

• Let 𝑡(𝑥1, … , 𝑥𝑛) = �̅�. Then,  

𝑡(𝑐𝑥1 + 𝑑, … , 𝑐𝑥𝑛 + 𝑑) =
𝑐(𝑥1+⋯+𝑥𝑛)+𝑛𝑑

𝑛
= 𝑐�̅� + 𝑑 = 𝑐 𝑡(𝑥1, … , 𝑥𝑛) + 𝑑  

⟶  �̅� is location-scale equivariant. 

• Let 𝑡(𝑥1, … , 𝑥𝑛) =
𝑌𝑛−𝑌1

𝑆
. Then,  

𝑡(𝑐 𝑥1 + 𝑑, … , 𝑐 𝑥𝑛 + 𝑑) =
(𝑐𝑌𝑛+𝑑)−(𝑐𝑌1+𝑑)

𝑐𝑆+𝑑
  =

𝑐𝑌𝑛−𝑐𝑌1

𝑐𝑆
=

𝑌𝑛−𝑌1

𝑆
=  𝑡(𝑥1, … , 𝑥𝑛)  

⟶  
𝑌𝑛−𝑌1

𝑆
 is location-scale invariant. 
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Chapter 4: Interval Estimation 

 

Chapter 3 dealt with the point estimation of a parameter or made the inference of estimating the true value of the parameter 

to be a point. In this chapter, we might make the inference of estimating that true value of the parameter is contained in some 

interval that is called interval estimation.  

 

Confidence Interval: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from 𝑓(𝑥, 𝜃). Let 𝑇1 = 𝑡1(𝑋1, … , 𝑋𝑛) and  𝑇2 = 𝑡2(𝑋1, … , 𝑋𝑛) be two statistics 

satisfying 𝑇1 < 𝑇2 for which 𝑃(𝑇1 < 𝜏(𝜃) < 𝑇2) = 1 − 𝛼, where 𝛼 does not depend on 𝜃, then the random interval (𝑇1, 𝑇2) 

is called 100 (1 − 𝛼)% confidence interval for 𝜏(𝜃), 𝛼 is called the confidence coefficient and 𝑇1 and 𝑇2 are called the lower 

and upper confidence limits, respectively, for 𝜏(𝜃). 

 

4.1 Confidence Intervals from Normal Distribution 

In this section, we derive confidence intervals for the mean 𝜇 and the variance 𝜎2 when the random sample 𝑋1, 𝑋2, … , 𝑋𝑛 has 

normal distribution. 

 

4.1.1 Confidence Interval for the Mean  

There are two cases to consider depending on whether or not 𝜎2 is known.  

First Case (𝝈𝟐 is known): 
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If the sample is selected from a normal population or, if n is large enough, (Theorem 2.3 and Theorem 2.4) the sampling 

distribution of the sample mean �̅� when 𝜎2 is known is given by 

�̅� − 𝜇

𝜎 √𝑛⁄
~𝑁(0,1) 

Then, we establish a 100 (1 − 𝛼)% confidence interval for 𝜇 when 𝜎2 is known as following: 

𝑃 (−𝑧1− 
𝛼

2
<

�̅�−𝜇

𝜎 √𝑛⁄
< 𝑧1− 

𝛼

2
) = 1 − 𝛼  

𝑃 (�̅� − 𝑧1− 
𝛼

2

𝜎

√𝑛
< 𝜇 < �̅� + 𝑧1− 

𝛼

2

𝜎

√𝑛
) = 1 − 𝛼  

where 𝑧1− 
𝛼

2
  is a value from z-table. 

 

Second Case (𝝈𝟐 is unknown and n<30): 

Now, we turn to the problem of finding a confidence interval for the mean 𝜇 of a normal distribution when we are not known 

the variance 𝜎2 and the sample size n is small. In Theorem 2.11 we found that   

�̅�−𝜇

𝑆 √𝑛⁄
~𝑡(𝑛−1)  

where 𝑆 is the sample standard deviation. Then, we can find 100 (1 − 𝛼)% confidence interval for 𝜇 when 𝜎2 is unknown as 

following: 

𝑃 (−𝑡(1− 
𝛼

2
 ,𝑛−1) <

�̅�−𝜇

𝑆 √𝑛⁄
< 𝑡(1− 

𝛼

2
 ,𝑛−1)) = 1 − 𝛼  
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𝑃 (�̅� − 𝑡(1− 
𝛼

2
 ,𝑛−1)

𝑆

√𝑛
< 𝜇 < �̅� + 𝑡(1− 

𝛼

2
 ,𝑛−1)

𝑆

√𝑛
) = 1 − 𝛼  

where 𝑡(1− 
𝛼

2
 ,𝑛−1) is a value from t-table with 𝑛 − 1 degrees of freedom.  

 

Example 4.1: 

Let 𝑋1, 𝑋2, … , 𝑋10 be a random sample from 𝑁(𝜇, 16) and let the sample mean �̅� be 3.67. Find 95% confidence interval for 

the population mean 𝜇. 

Solution: 

Since population variance is known, 𝜎2 = 16, and �̅� = 3.67, 𝑛 = 10; then 95% confidence interval for the population mean 

𝜇 is 

3.67 ± 𝑧
1− 

𝛼
2

4

√10
 

where, the value of z-table 𝑧1− 
𝛼

2
 is found as 

1 − 𝛼 = 0.95 ⟹ 𝛼 = 0.05 ⟹  
𝛼

2
= 0.025 ⟹ 1 −

𝛼

2
= 0.975 

⟹ 𝑧
1− 

𝛼
2

= 𝑧0.975 = 1.96 

Then,                                           3.67 ± 1.96
4

√10
⟹ 3.67 ± 2.4792 

⟹ 𝜇 ∈ (1.1908, 6.1492) 
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4.1.2 Confidence Interval for the Variance 

Let the random variable X be 𝑁(𝜇, 𝜎2). We shall discuss the problem of finding a confidence interval for 𝜎2. Our discussion 

will consist of two parts: the first when 𝜇 is a know number, and second when 𝜇 is unknown. 

First Case (𝝁 is known): 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 denote a random sample of size n from distribution that is 𝑁(𝜇, 𝜎2), where 𝜇 is known. From Corollary 2.2, 

we got that  

∑ (𝑋𝑖−𝜇)2𝑛
𝑖=1

𝜎2
~χ𝑛

2   

Let us select a probability, say 1 − 𝛼,  then 100 (1 − 𝛼)% confidence interval for 𝜎2 when 𝜇 is known is given by 

𝑃 (χ
(1− 

𝛼

2 
,𝑛)

2 <
∑ (𝑋𝑖−𝜇)2𝑛

𝑖=1

𝜎2
< χ

( 
𝛼

2
,𝑛)

2 ) = 1 − 𝛼  

𝑃 (
∑ (𝑋𝑖−𝜇)2𝑛

𝑖=1

χ
( 

𝛼
2

,𝑛)

2 < 𝜎2 <
∑ (𝑋𝑖−𝜇)2𝑛

𝑖=1

χ
(1− 

𝛼
2 

,𝑛)

2 ) = 1 − 𝛼  

where χ
( 

𝛼

2
,𝑛)

2  and χ
(1− 

𝛼

2 
,𝑛)

2  are χ2 values with 𝑛 degrees of freedom. 

Second Case (𝝁 is unknown): 

Now, we discuss the case when 𝜇 is not known. This case can be handled by making use of the facts from Theorem 2.8 that  

(𝑛−1)𝑆2

𝜎2
~χ𝑛−1

2      or    
∑ (𝑋𝑖

𝑛
𝑖=1 −�̅�)2

𝜎2
~χ𝑛−1

2  
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when the sample variance 𝑠2 is computed. Then, for a fixed positive integer 𝑛 ≥ 2, we can find a 100 (1 − 𝛼)% confidence 

interval for 𝜎2 as 

𝑃 (χ
(1− 

𝛼

2
,𝑛−1)

2 <
(𝑛−1)𝑆2

𝜎2
< χ

 (
𝛼

2
,𝑛−1)

2 ) = 1 − 𝛼  

𝑃 (
(𝑛−1)𝑆2

χ
( 

𝛼
2

,𝑛−1)

2 < 𝜎2 <
(𝑛−1)𝑆2

χ
(1− 

𝛼
2

,𝑛−1)

2 ) = 1 − 𝛼  

where χ
( 

𝛼

2
,𝑛−1)

2  and χ
(1− 

𝛼

2
,𝑛−1)

2  are χ2 values with 𝑛 − 1 degrees of freedom. 

 

Example 4.2: 

Let 𝑋1, 𝑋2, … , 𝑋25 be a random sample from normal distribution when the sample variance is equal to 2.3. Find 90% 

confidence interval for the population variance  𝜎2. 

Solution: 

We want to construct a confidence interval for 𝜎2 when the population is normal with unknown mean, thus we should use the 

following case 

𝑃 (
24(2.3) 

χ
( 

𝛼
2

,24)

2 < 𝜎2 <
24(2.3)

χ
(1− 

𝛼
2

,24)

2 ) = 0.9  

𝑃 (
55.2 

χ
( 

𝛼
2

,24)

2 < 𝜎2 <
55.2

χ
(1− 

𝛼
2

,24)

2 ) = 0.9  
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1 − 𝛼 = 0.9 ⟹ 𝛼 = 0.1 ⟹  
𝛼

2
= 0.05 ⟹ 1 −

𝛼

2
= 0.95 

⟹ χ( 0.05,24)
2 = 36.42     and    χ( 0.95,24)

2 = 13.85 

⟹ 𝜎2 ∈ (
55.2 

36.42
,

55.2

13.85
) ⟹ 𝜎2 ∈ (1.5157, 3.9856) 

 

4.2 Pivotal Quantity Method 

Pivotal Quantity: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from 𝑓(𝑥, 𝜃). Let 𝑄 = 𝑞(𝑋1, … , 𝑋𝑛;  𝜃) be a function of 𝑋1, … , 𝑋𝑛 and 𝜃. If 𝑄 has a 

distribution that does not depend on 𝜃, then 𝑄 is defined to be a pivotal quantity. 

 

Example 4.4: 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from 𝑁( 𝜃, 9). Then,  

1. �̅� −  𝜃~𝑁 (0,
9

𝑛
) and 

�̅�− 𝜃

3 √𝑛⁄
~𝑁(0, 1) are pivotal quantities. 

2. �̅� − 2𝜃~𝑁 (−𝜃,
9

𝑛
) is not pivotal quantity. 
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Pivotal Quantity Method: 

If 𝑄 = 𝑞(𝑋1, … , 𝑋𝑛;  𝜃) is apivotal quantity and has a probability distribution, then for any fixed 0 < 𝛼 < 1 there will exist 

𝑞1 and 𝑞2 such that 𝑞1 < 𝑞2 and  𝑃(𝑞1 < 𝑄 < 𝑞2) = 1 − 𝛼 

Therefore, we can find 100 (1 − 𝛼)% confidence interval for 𝜏(𝜃) as 

𝑃(𝑡1(𝑥1, … , 𝑥𝑛) < 𝜏(𝜃) < 𝑡2(𝑥1, … , 𝑥𝑛)) = 1 − 𝛼 

where 𝑡1 and 𝑡2 are functions of the random sample does not depend on 𝜃. 

Remark: 

If 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from 𝑓(𝑥, 𝜃), and the corresponding cumulative distribution function 𝐹(𝑥, 𝜃) is 

continuous in x. Then, a pivotal quantity can be given as  

𝑄 = −2 ∑ log 𝐹(𝑥𝑖 , 𝜃)𝑛
𝑖=1 ~ χ2𝑛

2   

Then, the (1 − 𝛼)100 % confidence interval for 𝜏(𝜃) is given as 

𝑃 (χ
(1− 

𝛼
2

,2𝑛)

2 < 𝑄 < χ
( 

𝛼
2

,2𝑛)

2 ) = 1 − 𝛼 

 

Example 4.5: 

If 𝑋1, … , 𝑋𝑛 be a random sample from the density function 

𝑓(𝑥) = 𝜃 𝑥𝜃−1,    0 < 𝑥 < 1 

Find a pivotal quantity for 𝜃 and use it to construct 100(1 − 𝛼)% confidence interval for 𝜃. 



STAT 223                                               Theory of Statistics 1                               Dr. Samah Alghamdi 

 
 

107 
 

Solution: 

The CDF of x is given by 

𝐹(𝑥) = ∫ 𝜃 𝑥𝜃−1𝑑𝑥
𝑥

0
= 𝑥𝜃,   0 < 𝑥 < 1 

So, the pivotal quantity can be of the form 

𝑄 = −2 ∑ log 𝑥𝑖
𝜃𝑛

𝑖=1 = −2𝜃 ∑ log 𝑥𝑖
𝑛
𝑖=1   

where 𝑄~ χ2𝑛
2 , then one can construct 100(1 − 𝛼)% confidence interval for 𝜃 as 

𝑃 (χ
(1− 

𝛼
2

,2𝑛)

2 < 𝑄 < χ
( 

𝛼
2

,2𝑛)

2 ) = 1 − 𝛼 

𝑃 (χ
(1− 

𝛼
2

,2𝑛)

2 < −2𝜃 ∑ log 𝑥𝑖

𝑛

𝑖=1

< χ
( 

𝛼
2

,2𝑛)

2 ) = 1 − 𝛼 

𝑃 (

− χ
( 

𝛼
2

,2𝑛)

2

2 ∑ log 𝑥𝑖
𝑛
𝑖=1

< 𝜃 <

− χ
( 1− 

𝛼
2

,2𝑛)

2

2 ∑ log 𝑥𝑖
𝑛
𝑖=1

) = 1 − 𝛼 

 

4.3 Large Sample Confidence Interval  

From Section 3.3, the MLE 𝜃 of 𝜃, has an asymptotic normal distribution when n is large which is given by  

√𝑛(�̂� − 𝜃)
𝑑
→ 𝑁 (0,

1

𝐼(𝜃)
)   or  𝜃

𝑑
→ 𝑁 (𝜃,

1

𝑛𝐼(𝜃)
) 
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Thus, we can write 

𝜃 − 𝜃

1 √𝑛𝐼(𝜃)⁄
~ 𝑁(0,1) 

Use the distribution of the MLE 𝜃 to construct 100(1 − 𝛼)% confidence interval for the parameter 𝜃 as following: 

𝑃(−𝑧
1− 

𝛼
2

<
𝜃 − 𝜃

1 √𝑛𝐼(𝜃)⁄
< 𝑧

1− 
𝛼
2

) = 1 − 𝛼 

𝑃 (𝜃 − 𝑧
1− 

𝛼
2

1

√𝑛𝐼(𝜃)
< 𝜃 < 𝜃 + 𝑧

1− 
𝛼
2

1

√𝑛𝐼(𝜃)
) = 1 − 𝛼 

In General: 

Since the MLE �̂�(𝜃) of 𝜏(𝜃), has an asymptotic normal distribution when n is large as following:  

�̂�(𝜃)
𝑑
→ 𝑁 (𝜏(𝜃),

(�́�(𝜃))
2

𝑛𝐼(𝜃)
) 

⇒  
�̂�(𝜃) − 𝜏(𝜃)

�́�(𝜃) √𝑛𝐼(𝜃)⁄
~ 𝑁(0,1) 

Then, 100(1 − 𝛼)% confidence interval for the parameter 𝜏(𝜃) is given by 

𝑃(−𝑧
1− 

𝛼
2

<
�̂�(𝜃) − 𝜏(𝜃)

�́�(𝜃) √𝑛𝐼(𝜃)⁄
< 𝑧

1− 
𝛼
2

) = 1 − 𝛼 



STAT 223                                               Theory of Statistics 1                               Dr. Samah Alghamdi 

 
 

109 
 

𝑃 (�̂�(𝜃) − 𝑧
1− 

𝛼
2

�́�(𝜃)

√𝑛𝐼(𝜃)
< 𝜏(𝜃) < �̂�(𝜃) + 𝑧

1− 
𝛼
2

�́�(𝜃)

√𝑛𝐼(𝜃)
) = 1 − 𝛼 

 

Example 4.6: 

Let 𝑋~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝛽) with large sample size. Construct 100(1 − 𝛼)% confidence interval for 𝛽. 

Solution: 

The pdf of the exponential distribution with parameter 𝛽 is defined as 

𝑓(𝑥, 𝛽) =
1

𝛽
𝑒−𝑥/𝛽 ,   𝑥 > 0 

We found from Example 3.2 and Example 3.3 that the MLE of 𝛽 is �̅� and it is an unbiased estimator (i.e. 𝐸(�̅� ) = 𝛽). Thus, 

�̅�  has an asymptotic normal distribution that is 

�̅� ~ 𝑁 ( 𝛽,
1

𝑛𝐼(𝜃)
) 

Now we need to derive the Fisher information, 𝐼(𝜃): 

log 𝑓(𝑥; 𝜃) = − log 𝛽 −
𝑥

𝛽
 

𝜕

𝜕𝜃
log 𝑓(𝑥; 𝜃) = −

1

𝛽
+

𝑥

𝛽2
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𝐼(𝜃) = 𝑉𝑎𝑟 [
𝜕

𝜕𝜃
log 𝑓(𝑥; 𝜃)] = 𝑉𝑎𝑟 [−

1

𝛽
+

𝑋

𝛽2
] =

𝑉𝑎𝑟(𝑋)

𝛽4
=

1

𝛽2
 

The asymptotic normal distribution of the MLE is 

�̅� ~ 𝑁 ( 𝛽,
𝛽2

𝑛
)   or   

�̅�− 𝛽

𝛽 √𝑛⁄
= √𝑛 (

�̅�

𝛽
− 1) ~𝑁(0,1) 

Thus, 100(1 − 𝛼)% confidence interval for 𝛽 is obtained as 

𝑃(−𝑧
1− 

𝛼
2

< √𝑛 (
�̅�

𝛽
− 1) < 𝑧

1− 
𝛼
2

) = 1 − 𝛼 

⇒  −
𝑧

1− 
𝛼
2

√𝑛
<

�̅�

𝛽
− 1 <

𝑧
1− 

𝛼
2

√𝑛
 

⇒  1 −
𝑧

1− 
𝛼
2

√𝑛
<

�̅�

𝛽
< 1 +

𝑧
1− 

𝛼
2

√𝑛
 

⇒  
�̅� √𝑛

√𝑛 + 𝑧
1− 

𝛼
2

< 𝛽 <
�̅� √𝑛

√𝑛 − 𝑧
1− 

𝛼
2
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Chapter 5: Bayesian Estimation 

 

In the last two Chapters 3 and 4, we assumed the random sample came from some known probability distribution 𝑓(𝑥, 𝜃) and 

we used the classic method to estimate the unknown parameter 𝜃 which was some fixed. In this Chapter, we will estimate 𝜃 

using the Bayesian method which is define the unknown parameter 𝜃 as a random variable and has a distribution depending 

on previous information called prior distribution. 

 

Prior and Posterior Distributions 

Consider a random variable 𝑋 that has a distribution of probability that depends upon the symbol 𝜃, where 𝜃 is an element of 

a well-defined set Ω. Let us now introduce a random variable Θ that has a distribution of probability over the set Ω. The 

probability distribution ℎ(𝜃) is called the prior distribution of Θ. Moreover, we now denote the probability distribution of 

𝑋 by 𝑓(𝑥|𝜃) since we think of it as a conditional distribution of 𝑋, given Θ = θ. For clarity in this chapter, we will use the 

following summary of this model: 

𝑋|𝜃  ~  𝑓(𝑥|𝜃) 

Θ  ~ ℎ(𝜃) 

Thus, we can write the joint conditional distribution of 𝑋, given Θ = θ, as 

𝐿(𝑥|𝜃) = 𝑓(𝑥1|𝜃)𝑓(𝑥2|𝜃) … 𝑓(𝑥𝑛|𝜃) 

Thus, the joint distribution of 𝑋 and Θ is   

𝑔(𝑥, 𝜃) = 𝐿(𝑥|𝜃)ℎ(𝜃)                                                                               (5.1) 
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The marginal distribution of 𝑋 is given by 

𝑔1(𝑥) = {
∫ 𝑔(𝑥, 𝜃)𝑑𝜃, if Θ is a continuous  

𝜃

∑ 𝑔(𝑥, 𝜃)𝜃 ,       if Θ is a discrete         
  

In either case the conditional distribution of Θ, given the sample 𝑋, is 

𝑘(𝜃|𝑥) =
𝑔(𝑥,𝜃)

𝑔1(𝑥)
=

𝐿(𝑥|𝜃)ℎ(𝜃)

𝑔1(𝑥)
                                                                         (5.2) 

The distribution defined by this conditional distribution is called the posterior distribution. The prior distribution reflects 

the subjective belief of Θ before the sample is drawn while the posterior distribution is the conditional distribution of Θ after 

the sample is drawn. Further discussion on these distributions follows an illustrative example. 

 

Example 5.1:  

Consider the model 

𝑋𝑖|𝜃  ~ iid 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜃) 

Θ  ~  Γ(𝛼, 𝛽), 𝛼 and 𝛽 are known 

Hence, the random sample is drawn from a Poisson distribution with mean 𝜃 and the prior distribution is Γ(𝛼, 𝛽) distribution. 

Thus, in this case, the joint conditional pdf of 𝑋, given Θ = θ, is 

𝐿(𝑥|𝜃) =
𝜃𝑥1𝑒−𝜃

𝑥1!
… .

𝜃𝑥𝑛𝑒−𝜃

𝑥𝑛!
, 𝑥𝑖 = 0, 1, 2, … , 𝑖 = 1, 2, … . , 𝑛, 

and the prior pdf is 
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ℎ(𝜃) =
𝜃𝛼−1𝑒

− 
𝜃
𝛽

Γ(𝛼)𝛽𝛼
, 0 < 𝜃 < ∞ 

Hence, the joint mixed continuous discrete pdf is given by 

𝑔(𝑥, 𝜃) = 𝐿(𝑥|𝜃)ℎ(𝜃) = [
𝜃𝑥1𝑒−𝜃

𝑥1!
…

𝜃𝑥𝑛𝑒−𝜃

𝑥𝑛!
] [

𝜃𝛼−1𝑒
− 

𝜃
𝛽

Γ(𝛼)𝛽𝛼
] 

=
𝜃∑ 𝑥𝑖

𝑛
𝑖=1 +𝛼−1𝑒

−(
𝑛𝛽+1

𝛽
)𝜃

∏ 𝑥𝑖!𝑛
𝑖=1 Γ(𝛼)𝛽𝛼

 

Provided that 𝑥𝑖 = 0, 1, 2, 3, … . , 𝑖 = 1, 2, … , 𝑛 and 0 < 𝜃 < ∞. Then, the marginal distribution of the sample, is 

𝑔1(𝑥) = ∫
𝜃∑ 𝑥𝑖

𝑛
𝑖=1 +𝛼−1𝑒

−(
𝑛𝛽+1

𝛽
)𝜃

∏ 𝑥𝑖!𝑛
𝑖=1 Γ(𝛼)𝛽𝛼

∞

0

𝑑𝜃 =
Γ(∑ 𝑥𝑖

𝑛
𝑖=1 + 𝛼)

∏ 𝑥𝑖!𝑛
𝑖=1 Γ(𝛼)𝛽𝛼 (

𝑛𝛽 + 1
𝛽

)
∑ 𝑥𝑖

𝑛
𝑖=1 +𝛼

 

Finally, the posterior pdf of Θ, given 𝑋 = 𝑥, is 

𝑘(𝜃|𝑥) =
𝑔(𝑥, 𝜃)

𝑔1(𝑥)
=

𝜃∑ 𝑥𝑖
𝑛
𝑖=1 +𝛼−1𝑒

− 
𝜃

(
𝛽

𝑛𝛽+1
)

Γ(∑ 𝑥𝑖
𝑛
𝑖=1 + 𝛼) (

𝛽
𝑛𝛽 + 1

)
∑ 𝑥𝑖

𝑛
𝑖=1 +𝛼
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Provided that 0 < 𝜃 < ∞. This conditional pdf is one of the gamma type with parameters 𝛼∗ = ∑ 𝑥𝑖
𝑛
𝑖=1 + 𝛼 and 𝛽∗ =

𝛽

𝑛𝛽+1
. 

Notice that the posterior pdf reflects both prior information (𝛼, 𝛽) and sample information (∑ 𝑥𝑖
𝑛
𝑖=1 ). 

𝜃|𝑋𝑖   ~Γ (∑ 𝑥𝑖

𝑛

𝑖=1

+ 𝛼 ,
𝛽

𝑛𝛽 + 1
) 

Remarks: 

1. In Example 5.1 notice that it is not really necessary to determine the marginal pdf 𝑔1(𝑥) to find the posterior pdf 𝑘(𝜃|𝑥). 

If we divide 𝐿(𝑥|𝜃)ℎ(𝜃) by 𝑔1(𝑥), we must get the product of a factor, which depend upon 𝑥 but does not depend upon 𝜃, 

say 𝑐(𝑥), That is, 

𝑘(𝜃|𝑥) = 𝑐(𝑥) 𝜃∑ 𝑥𝑖
𝑛
𝑖=1 +𝛼−1 𝑒

− 
𝜃

(
𝛽

𝑛𝛽+1
)
 

Provided that 0 < 𝜃 < ∞, and 𝑥𝑖 = 0, 1, 2, 3, … . , 𝑖 = 1, 2, … , 𝑛. However, 𝑐(𝑥) must be that “constant” needed to make 

𝑘(𝜃|𝑥) a pdf, namely 

𝑐(𝑥) =
1

Γ(∑ 𝑥𝑖
𝑛
𝑖=1 + 𝛼) (

𝛽
𝑛𝛽 + 1

)
∑ 𝑥𝑖

𝑛
𝑖=1 +𝛼

 

Accordingly, we frequently write that 𝑘(𝜃|𝑥) is proportional to 𝐿(𝑥|𝜃)ℎ(𝜃); that is, the posterior pdf can be written as 

𝑘(𝜃|𝑥)  ∝  𝐿(𝑥|𝜃)ℎ(𝜃)                                                                        (5.3) 

Note that in the right-hand member of this expression all factors involving constants and 𝑥 alone (not 𝜃) can be dropped. For 

illustration, in solving the problem presented in Example 5.1, we simply write 
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𝑘(𝜃|𝑥) ∝  𝜃∑ 𝑥𝑖
𝑛
𝑖=1 +𝛼−1𝑒

− 
𝜃

(
𝛽

𝑛𝛽+1
)
 

0 < 𝜃 < ∞. Clearly, 𝑘(𝜃|𝑥) must be gamma pdf with parameter 𝛼∗ = ∑ 𝑥𝑖
𝑛
𝑖=1 + 𝛼 and 𝛽∗ =

𝛽

𝑛𝛽+1
. 

2. There is another observation that can be made at this point. Suppose that there exists a sufficient statistic 𝑇 = 𝑡(𝑋) for the 

parameter so that 

𝐿(𝑥|𝜃) = 𝑓𝑇(𝑡 | 𝜃). 𝑘(𝑋), 

where now 𝑓𝑇(𝑡 | 𝜃) is the pdf of 𝑇, given Θ = θ. Then we note that  

𝑘(𝜃|𝑥)  ∝  𝑓𝑇(𝑡 | 𝜃) ℎ(𝜃)                                                                     (5.4) 

 

5.1 Bayesian Point Estimation 

Suppose we want a point estimator of 𝜃. From the Bayesian viewpoint, this really amounts to selecting a decision function 𝛿, 

so that 𝛿(𝑥) is a predicted value of 𝜃 (an experimental value of the random variable Θ) when both the computed value 𝑥 and 

the conditional pdf 𝑘(𝜃|𝑥) are known. Now, in general, how would we predict an experimental value of any random variable, 

say 𝑊, if we want our prediction to be “reasonably close” to the value to be observed?. Many statisticians would predict the 

mean, 𝐸(𝑊), of the distribution of 𝑊; others would predict a median (perhaps unique) of the distribution of 𝑊, and some 

would have other predictions. However, it seems desirable that the choice of the decision function should depend upon a loss 

function ℒ[𝜃, 𝛿(𝑥)]. One way in which this dependence upon the loss function can be reflected is to select the decision 

function 𝛿 in such a way that the conditional expectation of the loss is minimum. A Bayes’ estimate is a decision function 𝛿 

that minimizes the expectation of the loss function 𝐸{ℒ[Θ, 𝛿(𝑥)]|𝑋 = 𝑥} and then 
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                        𝛿(𝑥) = 𝐸{ℒ[Θ, 𝛿(𝑥)]|𝑋 = 𝑥} = {
∫ ℒ[𝜃, 𝛿(𝑥)]𝑘(𝜃|𝑥)

𝜃
𝑑𝜃,   if Θ is a continuous    

∑ ℒ[𝜃, 𝛿(𝑥)]𝑘(𝜃|𝑥)𝜃 ,         if Θ is a continuous     
                        (5.5) 

is called Bayes’ estimator of 𝜃.  

 

Some Possible Loss Functions: 

1. Squared Error Loss Function: 

The squared error loss function is given by 

ℒ[θ, 𝛿(𝑥)] = [𝜃 − 𝛿(𝑥)]2 

Then, the Bayes’ estimate is the mean of the conditional distribution of Θ, given 𝑋 = 𝑥 

𝛿(𝑥) = 𝐸(Θ|𝑥) 

2. Absolute Error Loss Function: 

The absolute error loss function is given by  

ℒ[θ, 𝛿(𝑥)] =  |𝜃 − 𝛿(𝑥)| 

Then, a median of the conditional distribution of Θ, given 𝑋 = 𝑥, is the Bayes’ solution  

𝛿(𝑥) = Median of Θ 

where the median, m, is the solution of  

∫ 𝑘(𝜃|𝑥)𝑑𝜃
𝑚

−∞

=
1

2
 

It is easy to generalize this to estimate a function of 𝜃, for a specified function 𝜏(𝜃). For the loss function ℒ[θ, 𝛿(𝑥)], a Bayes 

estimate of 𝜏(𝜃) is a decision function 𝛿 that minimizes  

𝐸{ℒ[𝜏(Θ), 𝛿(𝑥)]|𝑋 = 𝑥} = ∫ ℒ[𝜏(𝜃), 𝛿(𝑥)]
∞

−∞
𝑘(𝜃|𝑥)𝑑𝜃                                         (5.6) 
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The random variable 𝛿(𝑋) is called Bayes’ estimator of 𝜏(𝜃). 

 

Example 5.2:  

Consider the model 

• 𝑋𝑖|𝜃 ~ iid 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (1, 𝜃) 

Θ ~𝐵𝑒𝑡𝑎(𝛼, 𝛽) , 𝛼 and 𝛽 are known 

That is, the prior pdf is 

ℎ(𝜃) =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝜃𝛼−1(1 − 𝜃)𝛽−1 , 0 < 𝜃 < 1  

when 𝛼 and 𝛽 are assigned positive constants. We seek a decision function 𝛿 that is a Bayes’ solution. The sufficient statistic 

is 𝑌 = ∑ 𝑋𝑖
𝑛
1 , which has a 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛, 𝜃) distribution. Thus, the conditional pdf of 𝑌 given Θ = 𝜃 is 

𝑔(𝑦|𝜃) = (
𝑛

𝑦
) 𝜃𝑦(1 − 𝜃)𝑛−𝑦   𝑦 = 0, 1, . . . , 𝑛 

Thus by Equation (5.4), the conditional posterior pdf of Θ, given 𝑌 = 𝑦 at positive probability density, is 

𝑘(𝜃|𝑦)  ∝  𝜃𝑦(1 − 𝜃)𝑛−𝑦 𝜃𝛼−1(1 − 𝜃)𝛽−1, 0 < 𝜃 < 1 

That is  

𝑘(𝜃|𝑦) =
Γ(𝛼 + 𝛽 + 𝑛)

Γ(𝛼 + 𝑦)Γ(𝛽 + 𝑛 − 𝑦)
𝜃𝛼+𝑦−1(1 − 𝜃)𝛽+𝑛−𝑦−1, 0 < 𝜃 < 1 
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and 𝑦 = 0, 1, … . , 𝑛. Hence, the posterior pdf is a beta density function with parameters (𝛼 + 𝑦, 𝛽 + 𝑛 − 𝑦). We take squared 

error loss, i.e., ℒ[𝜃, 𝛿(𝑦)] = [𝜃 − 𝛿(𝑦)]2, as the loss function. Then, the Bayesian point estimate of 𝜃 is the mean of this beta 

pdf which is 

𝛿(𝑦) =  
𝛼 + 𝑦

𝛼 + 𝛽 + 𝑛
 

 

5.2 Bayesian Interval Estimation 

For fixed 𝛼, we can find two functions 𝑢(𝑥) and 𝑣(𝑥) so that the conditional probability 

𝑃(𝑢(𝑥) < Θ < 𝑣(𝑥)|𝑋 = 𝑥) = ∫ 𝑘(𝜃|𝑥)
𝑣(𝑥)

𝑢(𝑥)

𝑑𝜃 = 1 − 𝛼 

which is defined to be 100(1 − 𝛼)% Bayesian interval estimates of 𝜃. This interval is often called credible interval, so as 

not to confuse them with confidence interval. 

 

Example 5.3:  

Recall Example 5.1 where 𝑋1, 𝑋2, … , 𝑋𝑛 is a random sample from a Poisson distribution with mean 𝜃 and a Γ(𝛼, 𝛽) prior, with 

𝛼 and 𝛽 known, is considered. As given, the posterior pdf is a Γ (𝑦 + 𝛼,
𝛽

𝑛𝛽+1
) pdf, where 𝑦 = ∑ 𝑥𝑖

𝑛
𝑖=1 , i.e.  

𝜃|𝑋𝑖   ~Γ (𝑦 + 𝛼 ,
𝛽

𝑛𝛽 + 1
) 

Find:  
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a) Bayes’ point estimator of Θ using the squared error loss function. 

b) Bayes’ point estimator of Θ using the absolute error loss function. 

c) (1 − 𝜉)100% credible interval for Θ. 

d) a and c when, 𝛼 = 2, 𝛽 = 4, 𝑛 = 12, 𝑦 = 8, 𝜉 = 0.05. 

Solution: 

a) If we use the squared error loss function, the Bayes’ point estimate of Θ is the mean of the posterior 

𝛿(𝑦) =
𝛽(𝑦 + 𝛼)

𝑛𝛽 + 1
 

b) If we use the absolute error loss function, the Bayes’ point estimate of Θ is the median of the posterior or it is the 

solution, m, of the following equation: 

∫
(𝑛𝛽 + 1)𝑦+𝛼 𝜃𝑦+𝛼−1𝑒

− 
(𝑛𝛽+1)𝜃

𝛽

Γ(𝑦 + 𝛼)𝛽𝑦+𝛼

𝑚

0

𝑑𝜃 =
1

2
 

c) To obtain a credible interval, from that the posterior distribution of Θ we get that 

2(𝑛𝛽 + 1)

𝛽
Θ ~ Γ(𝑦 + 𝛼, 2) ⇔

2(𝑛𝛽 + 1)

𝛽
Θ ~ 𝜒(2(𝑦+𝛼))

2  

Based on this, the following interval is a (1 − 𝜉)100% credible interval for Θ 

𝑃 (χ
(1− 

𝜉

2
,2(𝑦+𝛼))

2 <
2(𝑛𝛽+1)

𝛽
Θ < χ

( 
𝜉

2
,2(𝑦+𝛼))

2 ) = 1 − 𝛼  

or                                            Θ ∈ (
𝛽

2(𝑛𝛽+1)
χ

(1− 
𝜉

2
,2(𝑦+𝛼))

2 ,
𝛽

2(𝑛𝛽+1)
χ

( 
𝜉

2
,2(𝑦+𝛼))

2 ) 
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where χ
(1− 

𝜉

2
,2(𝑦+𝛼))

2  and χ
( 

𝜉

2
,2(𝑦+𝛼))

2  are the lower and upper χ2 quantiles for a χ2 distribution with 2(𝑦 + 𝛼) degrees of 

freedom. 

d) If 𝛼 = 2, 𝛽 = 4, 𝑛 = 12, 𝑦 = 8, 𝜉 = 0.05, then the point estimator is 

𝛿(𝑦) =
4(8 + 2)

48 + 1
= 0.8163 

and the 95% credible interval for Θ is  

Θ ∈ (
4

2(48 + 1)
χ(0.975,20)

2 ,
4

2(48 + 1)
χ(0.025 ,20)

2 ) 

 From χ2  distribution Table:  χ(0.025 ,20)
2 = 34.17,   χ(0.975,20)

2 = 9.59, thus 

Θ ∈ (0.3914, 1.3947) 
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