## King Saud University

Department Of Mathematics.
M-203 [Final Examination]
(Differential and Integral Calculus)
(II-Semester 1439/1440)
Max. Marks: 40
Time: 3 hrs

$$
\text { Marking Scheme: } \quad \text { Q1 }[4+4+4] ; \quad \text { Q2[4+4+4]; } \quad \text { Q3 }[4+4+4+4] .
$$

Q. No: 1 (a) Determine the convergence or divergence of the series: $\sum_{n=1}^{\infty} \frac{n^{2}-1}{2^{n}\left(n^{2}+5 n\right)}$.
(b) Find the interval of convergence and radius of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{\ln ^{2}(n)}{n}(x-1)^{n}
$$

(c) Find the MacLaurin series for $f(x)=\cos \left(x^{3}\right)$ and use its first three nonzero terms to approximate the integral $\int_{0}^{1} \frac{1-\cos \left(x^{3}\right)}{x^{6}} d x$.
Q. No: 2 (a) A lamina has the shape of the region bounded by the graphs of the semicircle $x=\sqrt{1-y^{2}}$ and the $y$-axis. If the density at a point $P(x, y)$ is directly proportional to the distance of P to the origin, find the moment of inertia about the $y$-axis.
(b) Find the centroid of the solid bounded by the graphs of the equations $z=9-x^{2}-y^{2}$ and $z=1+x^{2}+y^{2}$.
(c) Evaluate the triple integral by changing to spherical coordinates:

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}} d z d y d x
$$

Q. No: 3 (a) Using Green's theorem, calculate the line integral $\oint y^{2} d x+(x+y)^{2} d y$ where $C$ is the triangle with vertices $A(1,0), B(1,1)$, and $D(0,1)$.
(b) Show that the following integral is independent of path and evaluate it:

$$
\int_{(1,0,0)}^{\left(3, \frac{\pi}{2}, 1\right)}\left(2 x \sin y+e^{3 z}\right) d x+\left(x^{2} \cos y\right) d y+\left(3 x e^{3 z}+5\right) d z
$$

(c) Use the divergence theorem and cylindrical coordinates to find the Flux integral of the vector field $\vec{F}(x, y, z)=x y \vec{\imath}+y z \vec{j}+z x \vec{k}$ over the boundary $S$ of the closed region $Q$ bounded by the graphs of the equations $x^{2}+y^{2}=1, z=0$, and $z=2$. (Provided $S$ is oriented by the unit normal directed outward).
(d) Use Stoke's theorem to evaluate the line integral $\oint \vec{F} \cdot \overrightarrow{d r}$ for the vector field $\vec{F}(x, y, z)=(y-z) \vec{\imath}+(z-x) \vec{\jmath}+(x-y) \vec{k}, C$ is the boundary of the part of the plane $2 x+3 y+z=6$ in the first octant oriented in a counterclockwise direction when viewed from above.

