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[Foreword

This text constitutes a collection of problems for using as an additional learning resource
for those who are taking an introductory course in complex analysis. The problems are
numbered and allocated in four chapters corresponding to different subject areas: Complex
Numbers, Functions, Complex Integrals and Series. The majority of problems are provided
with answers, detailed procedures and hints (sometimes incomplete solutions).

Of course, no project such as this can be free from errors and incompleteness. I will
be grateful to everyone who points out any typos, incorrect solutions, or sends any other
suggestion for improving this manuscript.

Contact: j.ponce @uq.edu.au
2016
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[1. Complex Numbers

1.1 Basic algebraic and geometric properties

1. Verify that
(a) (ﬁ-i) —i(l—\/§i> — 2
(b) (2—3i)(—2+i)=—1+8i

Solution. We have
(x/i—i) —i(l—ﬁi) —V2—i—it V2= -2,

and
(2—3i)(—241i) = —442i+6i—3> = —44+3+8i= —1+8i.

2. Reduce the quantity
Si

(1—0)(2—10)(3—1i)

to a real number.

Solution. We have

S5i Si i i

(1-i)2—-i)3—i) (1—-i)(5-51) (1-i)2 =2i

1
2



Chapter 1. Complex Numbers

3. Show that
(a) Re(iz) = —Im(z);
(b) Im(iz) =Re(z).

Proof. Let z = x+ yi with x = Re(z) and y = Im(z). Then
Re(iz) =Re(—y+xi) = —y = —Im(z)

and
Im(iz) = Im(—y+xi) = x = Re(z).

|
4. Verify the associative law for multiplication of complex numbers. That is, show that
(z122)23 = z1(2223)

for all z1,z2,23 € C.
Proof. Let z; = x; + iy, for k =1,2,3. Then
(12 = y1y2) +i(x2y1 +x1y2)) (x3 +y3i)

X1X2X3 — X3Y1Y2 — X2Y1Y3 — X1)2)3)
+i(xox3y1 + X123y +X1X2)3 — Y1Y2)3)

(z122)z3 = ((x1 +y18) (2 +y2i)) (x3 + y3i)
= (
= (

and
21(z223) = (x1 +y18) ((x2 +y2i) ) (x3 +y3i))
= (1 +y11) ((x2x3 —y2y3) +i(x2y3 +x32))
= (x1x2X3 — X3Y1Y2 — X2V1Y3 — X1Y2)3)
+ i(x2x3y1 + X1X3Y2 + X1X2)3 — Y1Y2Y3)
Therefore,
(z122)23 = z1(2223)
[ |
5. Compute
241
@) 5—:
(b) (1—2i)*

Answer: (a) (3+4i)/5, (b) —7 + 24i.



1.1 Basic algebraic and geometric properties

6. Let f be the map sending each complex number

. [ :|
y

Show that f(z1z2) = f(21) f(z2) forall z1,2 € C.
Proof. Let z; = x;+ yii for k =1,2. Then

2122 = (X1 +y18) (2 + y2i) = (X132 — y1y2) +i(x2y1 +x1y2)
and hence

X1X2 —Yy1y2  X2y1+xiy2
2122) = .
f@z2) [—Xz)’l —X1)2 x1x2_YI)’2]

On the other hand,

Xrooyi| | X2 » X1X2 —y1y2  X2y1+Xx1y2
fenf(z) {—)’1 xl} [—)’2 xz} szm —X1)2 XIXZ_)’IYJ

Therefore, f(z1z2) = f(z1)f(z2).

7. Use binomial theorem

(a+b)" = (g>a"+ (Y)a"1b+...+ <ni 1>ab”1 + (Z) b"

n
_ Z (”) &k pk
=0 \k
to expand

(@) (1+v/3i)20',
(b) (1+/30)~20,

Solution. By binomial theorem,
2011 2011
2011 2011
1+ 4/3i)2011 — < > V3ik = ( )3k/2l-k.
( ) kg() L (V3D k; .

Since i* = (—1)™ for k = 2m even and i* = (—1)"i for k = 2m+ 1 odd,

(14/30)%01 =

0<2m<2011 ( 2m

+1i

2011 )3,,,\/5(_1),"

0<2m+1<2011 (2m+ 1

BB G oo

m=0



10 Chapter 1. Complex Numbers

2011
2011 B 1—3i
o 4

)
:42%2%1 (20k11)(_\/§i)k
o 2

Similarly,

(14+V/3i)7201 = ( !

8. Graph the following regions in the complex plane:
(a) {z:Rez>2Imz};
(b) {z:7/2 < Argz <3m/4},
() {z:|z—4i+2|>2}.

Solution. (a)

34

Figure 1.1:
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11

(b)

Figure 1.2:

(©

Figure 1.3:

wiy



12 Chapter 1. Complex Numbers

9. Find all complex solutions of the following equations:

(@ z=1z
(b) Z+z9:0;
(c) z=-.

Z

Solution. (a) Let z = z—+iy. Thus

Z = Z

x+iy = x+iy
x—iy = x+iy
—iy = iy
y = 0
Hence, 7 =z if and only if Imz = 0.
(b) Let z = z+iy. Thus

z+z = 0
x+iy+z+iy = 0
x—iy+x+iy = 0

2x = 0
x = 0

Hence, 7+ z if and only if Rez = 0.
(c) In this part we have

9
Zzg —= =9 = [?=9 <= |{=3.

9
Hence, 7 = — if and only if |z| = 3. |
z

10. Suppose that z; and z, are complex numbers, with z;z; real and non-zero. Show that
there exists a real number r such that z; = 7.

Proof. Let z1 = x1 +1iy; and 2o = xp + iy, with x1,x2,y1,y2 € R. Thus

2122 = X1x2 — y1y2 + (xX1y2 +y1x2)i
Since z1z; is real and non-zero, z; # 0, zp # 0, and

xx2—y1y2#0 and  xpy2 +y1x =0.
Thus, since 7> # 0, then
z1 x1+iy1 ‘X2—|‘iy2
. x—in ntin
x1%2 = Y1y2 + (X1y2 + y1x2)i
3 +Y3
X1X2 — Y1y2
5 +Y)
X1X2 = Y1)2

X543

By setting r = , we have the result. |



1.2 Modulus 13

11. The set Q adjoin /2 is defined by Q <\/§> = {p—i—q\@ 1 p,q € Q}.
(a) Show that Q (ﬁ) is a field.
(b) IsV3eQ(Vv2)?

Proof. (a)Let p+qV2,r+sv2€Q (\/i) Since Q C R and R is a field, we have
the following:
Closure under (+):

(p+av2)+ (r+sv2) = (p+n)+(a+9v2€Q(V2)

Closure under (-):
(p+Q\/§> (r—l—sx/i) = (pr+2sq)+ (rq+ps)\/§ eQ (\/5)
(b) Suppose that V3i=a+bJ/2¢€ Q (\/5) . Note that b # 0. Thus we have

V3-bv2 =

a
3-2V2V3b+2 = d&°
21/6b 3—a’.
Since b # 0,
2

That is, v/6 € Q, which is a contradiction. Therefore, /3 ¢Q (\/5) [ |

1.2 Modulus
1. Show that

21— 2)? + 21+ 2 =2(|z1* + |22%)

for all z1,z, € C.

Proof. We have

|21 — 22|> + |21 + 22
= (z1—2)(z1 — ) + (21 +22) (21 +22)
=(z1—2)@ —22)+ (21 +22) @ +22)
= (21271 + 2222) — (122 + 2221)) + (21271 + 2222) + (z1Z2 + 2271))
=2(z171 +2222) = 2(Jz1* + |22)?).
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2. Verify that v/2|z] > |Rez| + |Imz|.
Hint: Reduce this inequality to (|x| — [y[)? > 0.

Solution. Note that

0 < (|Rez|+ |Imz|)? = |Rez|> — 2| Rez||Imz| 4 | Imz|>.

Thus
2|Rez||Imz| < [Rezf* +[Imzf?,
and then
|Rez|? +2|Rez||Imz| 4| Imz|* < 2(|Rez|* + |Imz|?).
That is

(IRez|+|Imz|)* < 2(|Rezf” + |Imz]?) = 2|z,

and therefore,
|Rez| +|Imz| < V2lz].

3. Sketch the curves in the complex plane given by
(a) Im(z) = —1;
(b) [z —1] = [z +il;
(©) 2z = |z—-2|.

Solution. Let z = x4 yi.
(a) {Im(z) = —1} = {y = —1} is the horizontal line passing through the point —i.
(b) Since
e— 1] =[z+i| & [(x=1) +yi] = |x+ (y+1)i]
& (- 1>+yz\2 e v+ 1)if?
S @12+ =+ (y+1)
Sx+y=0,
the curve is the line x4y = 0.
(c) Since
2zl = |z—2] © 2[x+yi| = |(x —2) + yi
& 4lx+yil* = | (x—2) + il
G4 +y%) = (=27 +)
&3 +4x+3y> =4

the curve is the circle with centre at —2/3 and radius 4/3.
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4. Show that
R*—R iz R*+R
< <
RZ+R+1 "~ |Z24z+1]|~ (R—1)2
for all z satisfying |z| = R > 1.
Proof. When |z| =R > 1,
|t +iz| > |2* — |iz] = [z|* — |il]z] =R* — R
and
12 +z4+1| < |2+ 2|+ |1 = [z]* + |z + 1 =R*+R+1
by triangle inequality. Hence
iz R*—R
> .
2+z+1| 7 R2+R+1
On the other hand,
| izl < |2 + iz = |o|* + |illzl = R*+ R
and
—1++/3i —1—+/3i
P4zl =|z— ——— z——\/_
2 2
L SIHVEBI| —1=VE
[ 2 | 2
—1+/3i —1—+/3i
>\ = |——| | | = |—F—
2 2
= (R-1)(R-1)=(R-1)?
Therefore,
iz R*+R
Z+z+1] 7 (R—1)%
[ |
5. Show that
|Log(z)| < [Infz|[+7 (1.1)
for all z # 0.

Proof. Since Log(z) = In|z| +iArg(z) for —m < Arg(z) <,
| Log(2)| = [Inz| +iArg(z)| < [In|z]| +[i Arg(z)| < |Inz]| + 7.
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1.3 Exponential and Polar Form, Complex roots

1. Express the following in the form x + iy, with x,y € R:
i 1—i
(a) T—T+—Tﬂ

— 1 i
(b) all the 3rd roots of —8i;
i1\ 1337
() (—)
V2

Solution. (a)

i 1—i P24 (1—i0)?
A+ — = —

1—i i (1 —1i)i
o —1-2i 1—i
=i 1—i
o —l4i-2i-2
N 2
e
2 2 2

(b) We have that

—IiT
8 = 23 iliad
i exp( > )

Thus the cube roots are

. . 7
2exp (Tm) ,  2exp <%) and 2exp (l?n) :

V3—i, 2, —\3—i

i—|—1 1337 i 1337
- f exp —
V2 Py

13377i
4
. T
= exp(167-2m+zz)
T, 1+
= exp—i=

TN

That is

()

= exp

2. Find the principal argument and exponential form of

1

(b) z=+3+i;
(c) z=2—1.
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Answer:
(a) Arg(z) = /4 and z = (v/2/2)exp(ni/4).
(b) Arg(z) = m/6 and z =2exp(7i/6).
(c) Arg(z) = —tan~'(1/2) and z = v/Sexp(—tan~'(1/2)i).

3. Find all the complex roots of the equations:
(a) 0= —
(b) 22 +2z+(1—i)=0.

Solution. (a) The roots are

2= V=9 =V9em = /3e™/62 /6 (1 =0,1,2,3,4,5)
36 V3. e 30 V3, B0 VB a0 V3,

=— 3N, ———+—i,——— —— 1, V3i,— — —1I.

2 2 2 2 2 2 2 2
(b) The roots are
—24+/4—4(1—i .
2= 5 U= 1hvi
— _1+ . /en'[/z — _1+e7l'i/4e2m7ti/2 (m:()’1)
2 2 2 2
Y GETE DA BSE A e
2 2 2 2
[ |

4. Find the four roots of the polynomial z* 4+ 16 and use these to factor z* + 16 into two
quadratic polynomials with real coefficients.

Solution. The four roots of z* 4 16 are given by

V16 = V166 = v/16e™/42mmi/4

— Zeﬂ'i/4 2637L'i/4 zeSﬂi/4 2e7ﬂi/4
form =0,1,2,3. We see that these roots appear in conjugate pairs:
26"/ = 2¢77i/4 and 263T/* = 2eSi/4,

This gives the way to factor z* + 16 into two quadratic polynomials of real coeffi-
cients:

Ar16= (z— 2em/4)( 2637:1/4)( _2657ri/4)(z_2e77ri/4)
(z—2e™%)(z 267’”/4)> <(Z—2e3ﬂi/4)(z—2e5”i/4)>
Z—2R (2eﬂl/4>z+4)( —2Re(2 3”1/4)2—1—4)

= (&
= (2 —2V2z4+4)( +2V2z+4)
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5. Do the following:
(a) Use exponential form to compute
i (1++/3i0)%;
i, (14+/3i)7201,

(b) Prove that

ZZm

1005 <201 1
m=0

A

and
1%5 < 2011 >(_3)m _ 22010'
o \2m+1

Solution. Since

1+V3i= (2+?z) —Zexp<7;i)

we have
(1_“/5[.)2011 — 92011 exp

=220 exp <6707El + )
1 V3
_ 12011 y2011 2 .
exp 2+ 5 l

=221 +\/§i).

Similarly,
(1 + \/gl-)fZOll — 272013<1 . \/gl)
By Problem 7 in section 1.1, we have

2010(1 4 /3i) = (14 /3i) 1!
1005 1005
2011 o 2011
— —3)"/3.
Z( ) +lmz—:0(2m+1)< V3
It follows that

1005 1005
2011 2011

) : < 0 >(_3)m — ) : ( 0 )(_3)m — 22010'
2m o \2m+1

m=0
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6. Establish the identity
o Zn—|—l

1—z2

(z#1)

and then use it to derive Lagrange’s trigonometric identity:

. (2n+1)6

1 sin~=—*

1+cosO +cos20---+cosnb = —+—2
2 2sin 5

1
l+z+2+ -+ =

(0< 6 <2m).

Hint: As for the first identity, write S = 1 4z + 722+ .-+ 7" and consider the
difference S — zS. To derive the second identity, write z = ¢'% in the first one.

Proof. 1f z # 1, then

(=) tzt+2") = I+t +" =+ + 4+
1_Zn+1

Thus
1— Zn—i—l

42424t ={ 15 271
n+1, if z=1.

Taking z = €%, where 0 < 6 < 2, then z = 1. Thus

| | | 1o _ (nt1)8
1469+ ... om0 = llieie :_eig/zl(eiZ/z_e—iO/Z)
—e~10/2(] — ((1+1)6)
2isin(0/2)
i <e‘i6/2 - e(”J“%)ie)
- 2sin(6/2)
1, sin[(n+5)6] = .cos(6/2) —cos|(n+)6]
~ 27 2sin(0/2) ! 25in(6/2)

Equating real and imaginary parts, we obtain

1 i Do
1+cosG+c0529---+cosn6:5+%

and
cos(6/2) —cos[(n+3)6)

2sin(0/2)

sin@ +sin20 --- +sinnf =
[ |

7. Use complex numbers to prove the Law of Cosine: Let AABC be a triangle with
|BC| =a, |CA| =b, |AB| = c and ZBCA = 6. Then

a* +b* —2abcos O = 2.
Hint: Place C at the origin, B at z; and A at z,. Prove that

2122 + 2221 = 2|z122| cos 6.
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Proof. Following the hint, we let C =0, B=7z; and A = z5. Then a = |71, b = |22
and ¢ = |z — 71]- So

@40 - =lal’+|nf - ln-al
= (2121 +2222) — (22 —21) (22— 21)
=(zz1+20)—(2—2)Z2—7)
= (2121 + 2222) — (1171 + 222 — 2122 — 2221)
= 2122 +2221-

Letz; = ry % and 0 = rzeigz. Then

21%0 + 2071 = 1€ r2ei® + 10927 0101

= (rle’.el ) (rze*’.ez) + (rzeiez)(rl e 10 )

i(61—6) 6,—6;)

= ryryel + el

= 2r1ryc08(0) — 62) = 2|z1||z2| cos @ = 2abcos 6.

Therefore, we have

b -

= 2122 + 2071 = 2abcos 0
and hence

a* +b* —2abcos O = c>.



[2. Functions

2.1 Basic notions

1. Write the following functions f(z) in the forms f(z) = u(x,y) + iv(x,y) under Carte-
sian coordinates with u(x,y) = Re(f(z)) and v(x,y) = Im(f(z)):
@) flz)=2+z+1

Solution. (a)

f2) = (x+iy)}+x+iy)+1
= (x4iy) (x> —y* +2ixy) +x+iy+1
= X —xy2 +2ix2y+ ixzy — iy3 — 2xy2 +x+iy+1
= X =30 +x+14+i3x%y—y> +y).

(b)

f(@) =2 —z=(x+yi)’ — (x+yi)
= (x3 + 3x2yi — 3xy2 —y3i) — (x+yi)
= (x3 —3xy? —X) +i(3x2y—y3 =),
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(©
1 1
f(z):i—z:—x—l—(l—y)
—x—(1—y)i
a2 (1-y)?
_ X . 1—y
TR P
(d)

f(z) = exp(z?) = exp((x+yi)?)
= exp((x? —y?) + 2xyi)
= e (cos(2xy) +isin(2xy))

= cos(2xy) — ie” sin(2xy)

2. Suppose that f(z) = x> —y? —2y+i(2x — 2xy), where z = x+ iy. Use the expressions
X = itz and y= iz
2 YT

to write f(z) in terms of z and simplify the result.

Solution. We have
f(z) = x*—y*—2y+i(2x—2xy)
= XX -y 4i2x—i2xy—2y
= (x—iy)? +i(2x+2iy)
= 72 42iz.

3. Suppose p(z) is a polynomial with real coefficients. Prove that
@) p(z) = p(2);
(b) p(z) =0if and only if p(z) = 0;
(c) the roots of p(z) = 0 appear in conjugate pairs, i.e., if zo is a root of p(z) =0,
SO 18 7.
Proof. Let p(z) =ao+a1z+ ... +ay7" for ap,ay,...,a, € R. Then

p(z) =aot+aiz+--+a,a"
=ay+az+-+apd"
=do+ (an)z+- -+ (an)2"
=ap+a1z+--+a, 7' = p(2).

If p(z) = 0, then p(z) = 0 and hence p(Z) = p(z) = 0; on the other hand, if p(z) =0,
then p(z) = p(z) = 0 and hence p(z) =0.
By the above, p(zo) = 0 if and only if p(Zg) = 0. Therefore, z( is a root of p(z) =0

if and only if 7 is. |
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4. Let
Z

T(z)= T

Find the inverse image of the disk |z| < 1/2 under T and sketch it.

Solution. Let D = {|z| < 1/2}. The inverse image of D under 7T is

T-UD) = € C: T(z) €D} = {|T(2)] < %}

e
lz41

Let z=x+yi. Then

1
<5}:{2\z|<|z+1|}.

20z] < [z+ 1] & 47 +*) < (x+1)* +)?
&322 +3yP < 1

& 12+2<4
3) TV g

= ! <2
‘73153
So
1 2
T'D)={z:|z—5|<3
= {3 <3)
is the disk with centre at 1/3 and radius 2/3. |

5. Sketch the following sets in the complex plane C and determine whether they are
open, closed, or neither; bounded; connected. Briefly state your reason.

(@ |z+3|< 1;
(b) |Im(z)| > 1;
() 1 <|z+3| <2

Solution. (a) Since {|z+3| <1} ={(x+3)>+y?>—1 <0} and f(x,y) = (x+3)%> +
y?> — 1 is a continuous function on R?, the set is open. It is not closed since the only
sets that are both open and closed in C are @ and C.

Since

Izl =|z+3-3|<|z+3|+|-3|=|z+3|+3<4

forall |z+3| < 1, {|z+3] < 1} C {|z] <4} and hence it is bounded.
It is connected since it is a convex set. [ |

Solution. (b) We have

{Im(z)] > 1} ={y[ = 1} ={y =1} U{y < -1}.
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Since f(x,y) =y is continuous on R?, both {y > 1} and {y < —1} are closed and
hence {|Im(z)| > 1} is closed. It is not open since the only sets that are both open
and closed in C are 0 and C.

Since z, =n—+2i € {|Im(z)| > 1} forall n € Z and

lim |z,| = lim V/n? 44 = oo,
n—yco n—yco

the set is unbounded.
The set is not connected. Otherwise, let p = 2i and ¢ = —2i. There is a polygonal
path

pop1Upip2U...Upu—1Pn
with po = p, p, = g and py € {|Im(z)| > 1} forall 0 < k < n.
Let 0 < m < n be the largest integer such that p,, € {y > 1}. Then p,+; € {y < —1}.
So Im(p;;) > 1> 0 and Im(py41) < —1 < 0. It follows that there is a point p €
PmPm+1 such that Im(p) = 0. This is a contradiction since ppppni1 C {|Im(z)| > 1}
but p & {|Im(z)| > 1}. Therefore the set is not connected. |

Solution. (c) Since —2 € {1 < |z+3| <2} and {|z+2| <r} ¢ {1 < |z+3| <2}
for all r > 0, {1 < |z+3| <2} is not open. Similarly, —1 is a point lying on its
complement

{1 <|z+3[ <2} ={[z+3] > 2} U{|z+3| < 1}
and {|z+1| <r} Z {1 <|z+3| <2} forall r > 0. Hence {1 < |z+3| < 2} is not
open and {1 < |z+3| < 2} is not closed. In summary, {1 < |z+ 3| < 2} is neither

open nor closed.
Since

Izl =1]z+3-3| < |z+3|+|-3| <5

forall [z+3] <2, {1 <|z+3| <2} C{|z] <5} and hence it is bounded.

The set is connected. To see this, we let p; = —3/2,p» = =3 +3i/2,p3 = —9/2
and py = —3 —3i/2. All these points lie on the circle {|z+ 3| = 3/2} and hence lie
in {1<|z+3]<2}.

It is easy to check that for every point p € {1 < |z+3| <2}, ppr C {1 < |z+3| <2}
for at least one py € {p1, p2,p3,Pa}. So the set is connected. [ |

. Show that

| sinz|*> = (sinx)? + (sinhy)?
for all complex numbers z = x + yi.

Proof.

| = |sin(x) cos(yi) + cos(x) sin(yi)|
|2

[sin(z)|* = [ sin(x+yi)
= | sin(x) cosh(y) — icos(x) sinh(y)
— sin’ xcoshzy + cos® xsinh? y

= sin® x(1 +sinh? y) +cos® xsinh? y

— sinx + (cos x + sin? x) sinh? y = (sinx)? + (sinhy)?.
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7. Show that

2

|cos(z)|* = (cosx)? + (sinhy)?

for all z € C, where x = Re(z) and y = Im(z).

Proof.
|cos(z)|? = |cos(x+ yi)|> = | cos(x) cos(yi) — sin(x) sin(yi)|*
= | cos(x) cosh(y) — isin(x) sinh(y)|?
= cos?xcosh® y +sin® xsinh?y
= cos?x(1 4 sinh?y) + sin? xsinh? y
= cos?x+ (cos?x+sin?x) sinh?y = (cosx)? + (sinhy)?
|
8. Show that

" ( n ) tanz; +tanzy
an =
ame)=aT (tanzp)(tanzp)

for all complex numbers z; and z; satisfying z1,22,z1 + 22 # nm + /2 for any integer
n.

Proof. Since

l-(e—izl _ eizl) l-(e—izz _ eizz)
¢i21 + e~z ei2 | e—it2
(e = 1) (€ ) 4 (e — o) (el o)
=i (€21 +e~iz1) (ei22 4 ¢~ iz2)
eiz1t) _ p—i(zit22)

—2i (ei71 + e—i21) (22 4 ¢—i22)

tanz) +tanzp; =

and
l-(e—iz1 _ eizl) l'(e—izz _ eilz)
1 —(tanz)(tanzz) = 1 — < ezl + e—iz1 ) ( ez 4 e~iz2
(714 ) (e 24 e2) 4 (67 —e 1) (e 2 — ¢'2)
_ e~ 21t pi21 ) (e—i%2 - pi22
(e7R1 e )(e 2 +e2)
ela1+2) 4 p=ilzi+z)
- (eizl + e*izl)(eizz + e*iZZ) ’
we have

tanz) +tanz, ei(ZI+ZZ) _ e_i(ZH‘Zz)
= —i— - =tan(z1 +22).
1 — (tanz;)(tanzp) eia1+2) 4 p—ilz1+22) (21 422)
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10.

Alternatively, we can argue as follows if we assume that the identity holds for z; and
zo real. Let
tanz; +tanzp

F(z1,20) =tan(z1 +22) = 1— (tanz;)(tanzy)”

We assume that F(z;,zp) = 0 for all z1,z € R with z1,22,21 + 220 #nt+ /2.
Fixing z; € R, we let f(z) = F(z1,z). Then f(z) is analytic in its domain

C\({nw+m/2} U{nm+m/2—z}).

And we know that f(z) = 0 for z real. Therefore, by the uniqueness of analytic
functions, f(z) = 0 in its domain. So F(z;,z2) =0 forall z; € R and z; € C in its
domain.

Fixing zp € C, we let g(z) = F(z,22). Then g(z) is analytic in its domain

C\({nw+7/2} U{nm+1/2—2}).

And we have proved that g(z) = 0 for z real. Therefore, by the uniqueness of analytic
functions, g(z) = 0 in its domain. Hence F(z;,z2) =0 forall z; € Cand z; € Cin
its domain. |

. Find all the complex roots of the equation cosz = 3.

Solution. Since cosz = (¢> +e%)/2, it comes down to solve the equation €@ +
e t=6,ie.,

wtw l=6ow?—6w+1=0

if we let w = ¢/, The roots of w?> — 6w+ 1 =0 are w = 3 +2+/2. Therefore, the
solutions for cosz = 3 are

iz=10g(3£2v2) & z = —i(In(3£2V2) + 2n7i) = 2n7 — iln(3 £ 2v/2)

for n integers. [
. (T
Calculate sin (Z + l).
Solution.
(TN b imjan _—imjai)
sm(4+z>—2i(e e )
_ %(e—lem’/4 . ee—m’/4)
i
! ( _](cosn-l—'sinn) (cosn 'sinn)>
=—e — +isin—) —e(cos — —isin—
2i 4 4 4 4
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T
11. Compute cos (E + i).

Solution.

cos(n—l—')—
3717

i(m/34i) —i(m/34i)
(e +e )

(e—leni/3+ee—7ri/3>

(e_l (cos r +isin£) —i—e(cosE —isin E))
3 3 3 3

Bl N =N =N =

12. Find i’ and its principal value.

Solution. We have

ilogi _ ei(2n7ri+m'/2) e—2n7r—7r/2

i=e =
for n integers and its principal value given by

0 ezLogz

i :ei(m‘/z) _ efn:/z.

13. Let f(z) be the principal branch of \/z.
(a) Find f(—i).

Solution.

F(i) = exp(5 Log(—i)) = exp(5 (- 5)) =exp(~ ) = 5>~ 1

(b) Show that

f(z1)f(z2) = Af(z122)

—1+\/§i0r—1—\/§i

for all 0, where A =1,
or all z1,z> # 0, where > 7
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Proof. Since

f(z1)f(z2) 1 1 1
JEDIR2)  exp(SL “Logz—-L
e exp(3 ogz+ 3 Logz — 3 0g(z122))
1
= exp(g(Logzl +Logzy —Log(z122)))
i 2nmi
= exp(3 (Argz) + Argzy — Arg(2122))) = exp(—5—)
for some integer n, A = exp(2nmi/3). Therefore,
1 if n =3k
A= =3 if = 3k
=B g = 3k 42
where k € Z. |

14. Let f(z) be the principal branch of z .
(a) Find f(i).
Solution.

fi) =i = exp(—iLog(i)) = exp(—i(7i/2)) = ™.

(b) Show that
f(21)f(z2) = A f(z122)

for all z;,zp # 0, where A = 1, " or e 2%,

Proof. Since

% = exp(—iLogz; —iLogzy +iLog(z122))
= exp(—i(Logz; +Logzz —Log(z122)))
= exp(—i(iArgz) +iArgzy —iArg(z122)))
= exp(Argz; + Argzy — Arg(z122))
= exp(2nm)

for some integer n, A = exp(2nm). And since
—n<Arg(z)) <m—nw<Arg(zz) <7
and
—7 < Arg(z120) <,
we conclude that
—31 < Argzy +Argzy — Arg(z122) < 37@

and hence —3 < 2n < 3.Son=—1,00r 1 and A = e~ %%,1 or **. [ |
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15. Determine the Mobius transformation mapping O to 2, 2i to 0, and i to 3/2.

Solution. Consider the function

az+b
= . 2.1
f@) =", 2.1
Then
b
f(0)=2 then 7= 2 (2.2)
f(=2)=0 then —2ia+b=0 (2.3)
3 ai+b 3
fli)=3 then a2 @4)
From 2.2 we get d # 0. Notice also that we can take d to be any nonzero complex
number.

Let us take d = i. Thus, from expression 2.2, we have b = 2i. From 2.3, a = 1, and
from 2.4 we have ¢ = 1.
Hence the transformation we are looking for is

Z+2i
Z)= .
/@) z+1
Remark: Other formulations are possible for different choices of the constant d,
e.g.
iz—2
) = iz—1

16. Let T be a mapping from C to C. A fixed point of T is a point z satisfying 7'(z) = z.
(a) Show that any Mobius transformation, apart from the identity, can have at most
2 fixed points in C.
(b) Give examples of Mobius transformations having (i) 2; (if) 1 and (iii) no fixed
points in C.

Proof. (a) Let the Mobius transformation be

az+b
T(z)= .
@=_1z
If T(z) = z, then
az+>b
= Z,
cz+d
cz?+dz = az+b,
4+ (d—a)z—b = 0. (2.5)

Now, if ¢ # 0, then the expression 2.5 is a quadratic equation with one or two
solutions. That is
—(d —a)+[(d — a)* +4bc]'/?
2c '
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17.

If ¢ =0, expression 2.5 becomes
(d—a)z=0.

This equation has one solution b/(d — a), if d # a. It has no solution, if d = a and
b # 0. And, finally, it has infinitely many solutions, if d = a and b = 0.

Notice that in the last case we have d = a and b = ¢ = 0. Since ad — bc # 0, then
a=d # 0. Thus we have

That is the identity, which is excluded.
(b) (i) From part (a), if ¢ # 0 and (d — a)? +4bc # 0, we will have 2 fixed points.
Hence, the function

is an example with two fixed points: —1 and 1.
(i) Now, a function with one fixed point, is the following

(iii) Finally, with no fixed points, we have

T(z)=z+1.

Forz € C, Shﬂ that:
(a) sinz =singz;
(b) coshz = coshz.

Proof. (a) Using the definition of sinz, we have

L elZ _ e—lZ e—lZ _ elZ e—lZ _ elZ elZ _ e—lZ
2i —2i —2i 2i

= sinzg

(b) Recall that for z = x + iy, we have that

="V =¢'eV =e¥ely = ¢t

Thus

Z_ p,— X Z_ p—2
coshZ:e 2e :(e 26 )zcoshz
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18. Find all solutions z € C of of the following (express your answers in the form x + iy):
(a) logz=4i;
b) =1
Solution. (a) We have that exp (logz) = z. Thus
z=exp(logz) = exp (4i) = cos4 +isin4
Notice that, if z = exp (4i), then we have
log (exp (4i)) = 4i+ 2nmi (nez)
In particular, for n = 0, we have that log [exp (4i)] = 4i.
(b) Method one: We know that 7' = exp (ilogz). Thus
exp(ilogz) = i
Since i = exp (i (/2 + 2nx)), with n € Z, then we have
T
exp <i (E + 2n7r>) = expli(ln|z| +iarg(z))]
= exp[—arg(z) +iln|z]
= exp[— arg(z)] -expl[iln |z]]

Thus -
arg(z) =2km (k€ Z) and Inlz|= 5 +2nm (n€Z)

Hence, .
Z=exp [5 —}—Znﬂ:] (neZ).

Method two: Consider the following identity

loglexp(ilogz)] = logi (2.6)
Thus

log[exp (ilogz)| = ilogz+ 2nmi (n €7)
Hence, substituting in (2.6), we obtain

ilogz+2mmi = logi (n €Z)

Thus
logz = —ilogi —2ni7 (n1 €7Z)

From the polar form of i, we have that r = 1 and ® = 7. Thus
. (T
logl:1n1+l<5+2n27r> (np €Z)

So
logz = —i [1111 +i (g +2n27r>} o= g+2ﬂ(n2—n1)
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with ny, ny € Z. Since n, —ny € Z, we have
/4
logz = §+2n7r (neZ)
Therefore, 7' = i when
/4
Z=exp [5 - 2n7r] (neZ)
[ |
19. Show that . .
tanh 'z = ~log [ ~2 ) . 2.7)
2 11—z
Solution. If w = tanh™! z, then
tanh sinhw " —e™™ 21
— nnw =— —_= =
¢ coshw eY4e W 241
Thus
Z(e2w+1> — eZw_l
€2W _ z+1
1-z
1
2wloge = log (i)
-z
1 1 z+1
— loef =
O T
Hence .
tanh ™!z = —log (i) .
1-z
[ |
20. Find all solutions of the equation tanhz = i and express them in the form x + iy.

Solution. Method one:

Applying the inverse hyperbolic function in both sides we have

z=tanh™'z=tanh™'(i).
Using the formula (2.7), we have

1 1+
tanh ' (i) = -1
anh™" (i) 20g(1_i)

1

= 5 log (i)
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Using the definition of log for i with » = 1 and ® = 7 /2 we have that

log (i) :lnl—l—i<g—|—2n7r> :i<g+2nn’> (neZ).

Therefore

1 T T

z=tanh~! (i) = 3 [i (5 +2n7r)} =i (Z +n7t>
forn € Z.
Method two:
We know that - L
tanhz = ~e = —zsm.(zz) = —itan(iz).
coshz  cos(iz)
Thus,
tanhz =i <= —itan(iz)=i <= tan(iz)=—1.

Applying the inverse trigonometric function in both sides we have
iz=tan"'(iz) = tan" ' (—1). (2.8)

Now, using the formula

tan" 'z = élog (H——Z>

i—Z
we obtain
B i i—1
tan' (1) = -1
an™ (=1) 2°g(1+i>
= %log(i)
I T
- Ll e
2[1<2+ nm (neZ)
= —(§+n7r> (neZ).

Thus, substituting in (2.8), we have

iz=— (g-l—nn') (neZ).

Hence

Zzi(%—f—mr) (neZ).
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21. Let Q; and Q, be nonempty, closed sets in C.

(a) Show that the set ) U, is closed.
(b) If instead €2; is nonempty and open:
(1) could Q; UQ; still be closed?
(i1) Need it be closed?
Give proofs or examples/counterexamples.

Proof. (a) We need to prove that
J(QUQ) CQIUQ.

Let z € d (Q1UQy). Thus, for every € > 0, we have that

Be(z) N (Q1UQ) #0 2.9)
and

Be(z) N (Q1UQ) = Be(z) N(Q]NQS) #0. (2.10)
From expression (2.9),

Be(2)NQ1#0 or Be(z)NQ #0, orboth.
But, from expression (2.10), we have
Be(z)NQS#0 and Be(z)NQS #0.

Hence
Be(z)NQ1 #0 and Be(z) NQ{ #0,

or

or both. This means that z € dQ or z € dQ» (or both). That is

7€ dQUIQ,.

Since Q1 and Q, are closed, we have that z € dQ U JdQy C Q1 UQ,. Therefore
QUL is closed.

(b) (i) The answer is "yes’. For example, Q| = B;(0), Q, = B;(0).

(ii) The answer is 'no’. For example, Q| = B1(0), Q; = B,(0). In this case, QU
Q, = Q) is open. [ |
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2.2 Limits, Continuity and Differentiation

1. Compute the following limits if they exist:

3
iz7+1
Iim ———;
@ zgl;li 22+1

. 4+7
O e

(¢) lim Im(z).
=0 Z

Solution. (a)

. i+l (P +P)
lim = lim ——=
——i 2 +1 ——i 72241
_ i 10 it ?)
=i (z+i)(z—1)
= 1im.—i(Z2 s + ?)
Z——l1 Z—1
i, (P iz i)
lim,,_;(z—1i)
_limg, 22 —ilimg iz +lim,, ;2

limzﬁfiz - limzﬁ,,‘ l

i(=i)?—i(=)+) 3

—i—1 2
(b)
lim A i 4T
700 (7 — 1)2 250 (Z*I — 1)2
i 472 +1 _ lim, ,o(4z% +1)
20 (T=27 ~ Timo(1—2)?
_ 4(lim_0 Z)2 +lim; 01 1
(lim; 01 —1lim;_,z)?
(c) Since
lim @) _fim? =
Re(2)=0,2—0 2 y—0 yI
and
0
im0
Im(z)=0,—0 Z x—0Xx

the limit does not exist.



36 Chapter 2. Functions

2. Show the following limits:

47
1 =4,
(@) lim 5 a "
2
b) li = oo
(b) Zl_>n°lo Zz+4223 X
. (az+b) a .
(©) Zh_{{}()—(cyrd)3 = 5 ifc#0.
Solution. (a)
5
4 5 4 1 4
im % m o HE —4

1w 7d — 427 70 (1)5 —42 (l) a 70 1 — 4274 -
Z Z

(b) Notice that

lm e I VA
20 72 + 427 =0 | 1/22+42/z
1 ~1
— lm|5—=
Zgr(l) Lz—i—4213}
— lim (2 +427°) =0.
z—0
4
Theref li = oo.
erefore, lim -~
()
(az+b)* . (a/z+b)® . (a+b2)’ &

P (cz+d)? 50 (c/z+d)? 25 (c+dz)? &

3. Show that lirr(l) z/7 does not exist.
Z—

Hint: Consider what happens to the function at points of the form x + 0i for x — 0,

x # 0, and then at points of the form 0+ yi fory — 0, y # 0.

Proof. For z=x+0i,x#0,

— Y151 as x—o.
X

IS IR

On the other hand, for z=0+4yi, y #0,

oM 51 as yoo.
Z —Vyi

However, lin(l) z/7Z must be independent of direction of approach. Hence limit does
—

not exist.
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4. Show that if f(z) is continuous at 7o, so is | f(z)]-

Proof. Let f(z) = u(x,y) +iv(x,y). Since f(z) is continuous at zg = xo + yoi, u(x,y)
and v(x,y) are continuous at (xg, o). Therefore,

(u(x,3))* + (v(x,))?

is continuous at (xp,yo) since the sums and products of continuous functions are
continuous. It follows that

@)= 1/ () + (v(x.y))?

1s continuous at zp since the compositions of continuous functions are continuous.
|

5. Let

f =2/ 120
0 ifz=0
Show that
(a) f(z) is continuous everywhere on C;
(b) the complex derivative f/(0) does not exist.

Proof. Since both 7> and z? are continuous on C* = C\{0} and 72 # 0, f(z) =7 /7>
is continuous on C*.
At z=10, we have

=3

li =i
Z%V@!;%

72

=lim|z| =0
—0

and hence lim,_,¢ f(z) = 0= f(0). So f is also continuous at 0 and hence continuous
everywhere on C.
The complex derivative f(0), if exists, is given by

_ =3

i /@ =0 T

=0 z—0 =023
Letz=x+4yi. If y=0 and x — 0, then

=3 3

) LX
lim —3:11m—: 1.

7=x—02Z x—0X

On the other hand, if x =0 and y — 0, then

=3 —u\3
MliZMéli:—L
z=yi—0 Z3 x—0 (yl)3

So the limit lim, 0z’ /z> and hence f’(0) do not exist. [
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6. Show that f(z) in (2) is actually nowhere differentiable, i.e., the complex derivative
f'(z) does not exist for any z € C.

Proof. 1t suffices to show that C-R equations fail at every z # 0:

i+‘i ()— 14_2 i
dx lay Hz) = dx lay 22
d (Z\ .0 (Z
_5(?)“87(?2)
32 22\ [ 37 2i7
7))\

=2
6z % 40
for z # 0. [ |
7. Find f’(z) when
@) f(z) =2>—4z+2;
(b) f(z)= (l—lz )% |
(©) f(z) = > +1( 3&—5%

(@) fz)=e"* (z#0).
Answer. (a) 2z —4; (b) —8(1 —22)%z; (¢) —1/(2z+ 1)2; (d) —e'/?/22.
8. Prove the following version of complex L'Hospital: Let f(z) and g(z) be two

complex functions defined on |z — zo| < r for some r > 0. Suppose that f(zp) =
g(z0) =0, f(z) and g(z) are differentiable at zy and g'(z9) # 0. Then

f(@) _ f(z0)
m=——==
0 g(z)  ¢'(20)
[Refer to: problems Ic and 6 in section 3.1; and problem 12 in section 3.2]

Proof. Since f(z) and g(z) are differentiable at zp, we have

f(z) = f(z0)

li =f
Jim == f'(z0)
and
720 Z—20
And since g'(z0) # 0,
f(

lim 2) = flzo) _ lime—zy(f(2) — f(20))/(2—20) _ f'(20)
=2 g(2) —g(z0) i '
Finally, since f(zo) = g(z0) =0,

&) _ f'(0)

—0g(z)  g(20)
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9. Show that if f(z) satisfies the Cauchy-Riemann equations at zo, so does (f(z))" for
every positive integer n.

Proof. Since f(z) satisfies the Cauchy-Riemann equations at zo,

(%—l—i%) flz)=0

at zg. Therefore,

(5415 ) UE@F = S0P +i5 ()

— Q) I+ 5
— )y (5+ig ) 0 =0
at zo. |

2.3 Analytic functions

1. Explain why the function f(z) = 27> — 3 — ze* + ¢~ 7 is entire.

Proof. Since every polynomial is entire, 27> — 3 is entire; since both —z and e are
entire, their product —ze* is entire; since e° and —z are entire, their composition e~ *
is entire. Finally, f(z) is the sum of 27> — 3, —ze? and e~ % and hence entire. |

2. Let f(z) be an analytic function on a connected open set D. If there are two constants

c1 and ¢ € C, not all zero, such that ¢; f(z) +c2f(z) = 0 for all z € D, then f(z) is
a constant on D.

Proof. If ¢c; =0, ¢; # 0 since ¢ and ¢, cannot be both zero. Then we have ¢ f(z) =
0 and hence f(z) =0 forall z € D.

If c; #0, f(z) = —(c1/c2) f(z)- And since f(z) is analytic in D, f(z) is anlaytic in
D. So both f(z) and f(z) are analytic in D. Therefore, both f(z) and f(z) satisfy
Cauchy-Riemann equations in D. Hence

o .0 N
($+l8_y) (u+vi)=0

in D, where f(z) = u(x,y) +iv(x,y) with u = Re(f) and v = Im(f). It follows that

99N (212,20
ox ay) " T \ox oy )V T

and hence uy = uy = vy = vy, = 0 in D. Therefore, u and v are constants on D and
hence f(z) = const. [
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3. Show that the function sin(Z) is nowhere analytic on C.

Proof. Since

Jd . Jd\. . d . .d .
(8_x + la—y) sin(z) = > sin(z) + la—y sin(Z)
7 _.0Z

= cos(Z)a + icos(z)a—y

— cos(2) +icos(2)(—i) = 2c0s(3)

sin(Z) is not differentiable and hence not analytic at every point z satisfying cos(z) #
0. At every point zq satisfying cos(zp) =0, i.e., zo = nw + /2, sin(Z) is not differ-
entiable in |z — zo| < r for all r > 0. Hence sin(Z) is not analytic at zo = nw + /2
either. In conclusion, sin(Z) is nowhere analytic. [

. Let f(z) = u(x,y) +iv(x,y) be an entire function satisfying u(x,y) < x for all z =

x+yi. Show that f(z) is a polynomial of degree at most one.

Proof. Let g(z) = exp(f(z) —z). Then |g(z)| = exp(u(x,y) —x). Since u(x,y) < x,
lg(z)| <1 for all z. And since g(z) is entire, g(z) must be constant by Louville’s
theorem. Therefore, g’(z) = 0. That is, (f'(z) — 1)exp(f(z) —z) = 0 and hence
f'(z) =1 forall z. So f(z) = z+ ¢ for some constant c. |

. Show that

| eXP(Z3 + l) + eXp(_iZ2)| S ex3_3xy2 + e2xy

where x = Re(z) and y = Im(z).
Proof. Note that |e?| = eRe(). Therefore,

|exp(z’ +i) +exp(—iz?)| < |exp(2’ +1i)| + | exp(—iz®)]
= exp(Re(2’ +1)) +exp(Re(—iz?))
= exp(Re((x’ —3x*) + (3x°y —y* + 1))
+exp(Re(2xy — (x* —y?)i))
= O3 2y,

6. Let f(z) = u(x,y) +iv(x,y) be an entire function satisfying

v(x,y) > x

for all z = x+ yi, where u(x,y) = Re(f(z)) and v(x,y) = Im(f(z)). Show that f(z)
is a polynomial of degree 1.
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Proof. Let g(z) =exp(if(z) +z). Then
|8(2)] = [exp((=v(x,y) +iu(x,y)) + (x+iy))| = exp(x = v(x,y)).

Since v(x,y) < x, x —v(x,y) <0 and |g(z)| < 1 for all z. And since g(z) is entire,
g(z) must be constant by Louville’s theorem. Therefore, g’(z) = 0. That is, (if'(z) +
1)exp(if(z) +z) =0 and hence f'(z) =i forall z. So f(z) = iz+ ¢ for some constant
c. |

. Show that the entire function cosh(z) takes every value in C infinitely many times.

Proof. For every wy € C, the quadratic equation y* — 2wgy + 1 = 0 has a complex
root yp. We cannot have yo = 0 since 0> — 2wq -0+ 1 # 0. Therefore, yo # 0 and
there is zg € C such that ¢ = y,. Then

eV +e 0 vi+1 _ 2woyo o

cosh(zg) = =
(z0) 2 2Zyo 2yo

And since cosh(z + 27mi) = cosh(z), cosh(zg + 2nmi) = wy for all integers n. There-
fore, cosh(z) takes every value wy infinitely many times. [

. Determine which of the following functions f(z) are entire and which are not? You
must justify your answer. Also find the complex derivative f(z) of f(z) if f(z) is
entire. Here z = x + yi with x = Re(z) and y = Im(z).

1
(@) f(z)= [Ep

Solution. Since u(x,y) = Re(f(z)) = (1+x>+y*)~! and v(x,y) =0, u, =
2x(1+x?+y?) % # 0 = vy. Hence the Cauchy-Riemann equations fail for f(z)
and f(z) is not entire.

(b) f(z)= 20 (here 2¢ and 3¢ are taken to be the principle values of 2° and 3%,
respectively, by convention)

Solution. Let g(z) = 2% and h(z) = 2%, Since both g(z) and h(z) are entire,
f(z) = g(h(z)) is entire and

f'(z) = ¢ (h(z))K (z) = 2% 3(In2)(In3)

by chain rule.

©) f(z) = (x*—y*) —2xyi

Solution. Since

Jd .d B N N :
(a +l8_y) f=2x—2yi)+i(—2y—2xi) =4x—4yi #0,

the Cauchy-Riemann equations fail for f(z) and hence f(z) is not entire.
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(d) f(z) = (* =)+ 2xyi

dx lay D : ’

the Cauchy-Riemann equations hold for f(z) everywhere. And since f; and f,
are continous, f(z) is analytic on C. And f'(z) = f, = 2x+ 2yi = 2z.

9. Let Cg denote the upper half of the circle |z| = R for some R > 1. Show that

e < 1
2+z+1| = (R—1)2

for all z lying on Cg.

Proof. For z € Cg, |z| = R and Im(z) > 0. Let z = x+ yi. Since y = Im(z) > 0,
‘eiZ| — ’ei(x—i—yi)’ _ ‘e—y+xi‘ — eV <1

for z € Cg. And since

2 4z+1]= (Z_Lﬁ’) (Z_—l—_\@’)‘

2 2
L 143 —1—/3i
[ 2 z 2
S (P 1 ) U bl
= Z ) Z )
=R-1)(R-1)=(R—1)%,

we obtain

ez 1

<
z2+z+1‘_(R—1)2

for z € Cp. [ |

10. Let

[2/1 itz
fla)= {0 ifz=0

Show that f(z) is continuous everywhere but nowhere analytic on C.
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11.

Proof. Since both Z and |z| are continuous on C, 72/|z| is continuous on C*. There-
fore, f(z) is continuous on C*. To see that it is continuous at 0, we just have to show
that

=2
lim (z) = lim = = £(0) = 0.
70 0 |z]
This follows from
=2 =12
tim || = tim 2 Z fim ¢ = 0.
—0llz|]| z=0 |z] =0

Therefore, f(z) is continuous everywhere on C.
To show that f(z) is nowhere analytic, it suffices to show that the Cauchy-Riemann
equations fail for f(z) on C*. This follows from

d .9\ [
(e+5) ()
(22 X\ L 2z ¥
(-5 H(E %)

_ (—x—iy)Z 32
2|3 2]

for z # 0. Consequently, f(z) is nowhere analytic. [

Find where
tan~!(z) = = Log

is analytic?

Solution. The branch locus of tan~!(z) is

{z:”—zzwe(—m,()]} ={z:z=i$;1,w€(—w,0]}.

-z
For w € (—e0,0],

w—1 2
—— =1———€ (—oo,—1|U(l,

so tan~!(z) is analytic in

C\{z:Re(z) =0,Im(z) € (—oo, —1]U[1,e0)}.
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12.

13.

Show that the following functions are defined on all of C, but are nowhere analytic
(here z = x+iy):

(@) 7z 2xy+i(x*+y%);

(b) z+—> e¥e™.

Proof. (a) Notice that the real and imaginary components of the function

f(2) = flx+iy) = 2xy+i(x* +y%)

are well defined. Hence the function f(z) is defined on all C. If f(z) were analytic
then we will have

uy=vy = 2y=2y 2.11)
and
uy=—vy = 2x=-2x (2.12)

Equation (2.11) is true for all z € C. However, equation (2.12) is true only on
the imaginary axis. Hence, there is no point in C for which the functions f(z)
is differentiable on a neighbourhood (since the Cauchy Riemann equations are
necessary for differentiability) and therefore, f(z) is nowhere analytic.

(b) Note that the real and imaginary components of the function

f(z) = flx+iy) = &e™ = &’ cosx +ie’ sinx

are well defined. Hence the function f(z) is defined on all C. If f(z) were analytic
then we will have

Uy = vy = —e’sinx = €’ sinx = 2¢’sinx =0 = sinx =0

and
Uy = —vy = €’ cosx = —e’ cosx = 2¢’ cosx =0 = cosx = 0.

On the one hand, we have that the roots of sinx are nw (n = 0,£1,£2,...), but
cos(nm) = (—1)" # 0. On the other hand, the roots of cosx are (2n—1)m/2 but
sin((2n—1)xw/2) = —cos(nm) = —(—1)" # 0. Consequently, the Cauchy-Riemann
equations are not satisfied anywhere. |

Show where the function z — x* +i(1 —y)? is:
(a) analytic;
(b) differentiable (here z = x + iy).
Solution. If the function
f@) = flz+iy) =X +i(1-y)’

were analytic then we will have

uy=vy = 3x*=-3(1—y)?



2.3 Analytic functions 45

which is only satisfied at x =0, y = 1; and, on the other hand,
uy - _Vx :> 0 - 0,

which holds everywhere. Note also that the componentes of f(z), and all its first-
order partials exist everywhere.

Since the Cauchy-Riemann equations only hold at z = i, the function f(z) is only dif-
ferentiable at z = i. Hence, in particular, it is not differentiable on any neighbourhood
of any point, and therefore is nowhere analytic. [ |

14. Verify that the following functions are analytic on their domain of definition, and
state the derivative, (here z =x+iy = €'9):

(@) z—Inr+i6, domain {z:r>0,0< 0 <2m};

47+ 1
(b) 7+ % domain C\ {0,1,—11.

Solution. (a) We have u, = 1/r, v, =0, ug =0, vy = 1. Hence u, u,, ug, v, v,, vg

are defined and continuous on the domain, with the Cauchy-Riemann equations
being satisfied. That is

=1

SN | =

ruy=ve <& r- , and ug=-v, & 0=0.

The derivative is then

) =e O +iv,) =e (l> _ l’

r ret®  z

since z = re'®. This is defined on the whole domain, Therefore the function f(z) is
analytic there.

(b) The functions is a rational function and hence exists and is differentiable as long
as the denominator does not vanish, which is true on the whole domain. Hence f is
analytic on the whole domain, with

F) = (2 —2)-4—(4z+ )32 —1) _ (82 +3z+1)

(2> —2)? (22 —2)?

2.3.1 Harmonic functions

1. Verify that the following functions u are harmonic, and in each case give a conjugate
harmonic function v (i.e. v such that u + iv is analytic).
(@) u(x,y)=3xy+2x" -y —2)?,
(b) y(x,y) =In(x*+?).

Solution. (a) If u(x,y) = 3x>y 4+ 2x> —y> — 2y?, then

uy = 6xy +4x, uy = 3x% —3x2 — 4y
Uye = 6y +4, Myy:—6y—4
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Thus
Aut =ty + 1y, = 6y +4+4(—6y—4) =0.

Hence, u is harmonic.
The harmonic conjugate of u will satisfy the Cauchy-Riemann equations and have
continuos partials of all orders. By Cauchy-Riemann equations

Uy = Vy, Vx = —ly,

we have that vy, = 6xy +4x. Thus

Y= /(6xy +4x)dy = ?))cy2 +4xy + g(x).

Thus
ve =3y> +4y+g' (x)
Since vy = —uy,
32 +4y+g'(x) = —3x2+3y*+4y
glx) = =3¢
gla) = =

Therefore, the harmonic conjugate is

v(x,y) = 3xy% +4xy — x°.

(b) If u(x,y) = In(x*> — y?), then

2x 2y
e x2+2y e x2+2y
o — 2(y* —x?) it -
(x2+y2)2 W2 y2)2

Thus

2P —x%) 20 =»*) 5

Hence, u is harmonic.
Similarly to the previous part, by Cauchy-Riemann equations

Uy =Vy, Vx = —Uy,
e have that al Thus
\W \Y vy, = ——=. Thu
y x2+y2
2x
v:/x2 2dy:2arctani—:+g(x)
So we have 5
Vy = Y +gl(x)

x2 +y2
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Since vy = —uy,

gx) =0

x2 + y2

glx) = ¢ ceR

Hence the harmonic conjugate is

v(x,y) =2 arctani

Notice that u is defined on C\ {0} and v is not defined if x = 0. |

2. Suppose that U solves a Neumann problem for Laplace’s equation on a domain Q.
Show that U + ¢ also solves this problem for any ¢ € R. Does the same result hold
for the corresponding Dirichlet problem?

Proof. Let n be the external unit normal to . If U solves a Neumann problem then
U satisfies the following conditions

AU =0, inQ;
du
d—n:g, on (9(2

Considering U + ¢, we have
A(U +c¢) =AU =0.

So U + c¢ satisfies Laplace’s equation in dQ. Furthermore,

d
— (U+4c¢)=V({U+c) n=VU -n=—-—— =
U+0)=V(U+c)n=VU-n=""

dn
Then U + c also satisfies the boundary condition on €. Therefore, U + ¢ solves the
Neumann problem.
On the other hand, if U solves a Dirichlet problem, it satisfies the conditions

8

AU =0, inQ;

U=a, ondQ
where o € R. Certainly, U + ¢ satisfies Laplace’s equation for any ¢ € R. However,
U + c satisfies the second condition only when ¢ = 0. Hence, U + ¢ does not solve a
Dirichlet problem. [

3. Let A be the domain {w|Imw < 7}. Denote the two components of the boundary
of Aby I't = {w|Imw = 0} and I'; = {w|Imw = r}. Let C be an arbitrary real
constant.
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(a) Verify that the function
T =Im (% +Ccoshw>
is harmonic on A, and satisfies the Dirichlet boundary conditions

ﬂ —0, T
I

=1.
I,

(b) For what values (if any) of C is T a bounded function on A, i.e. for what values
of C does there exist an M > 0 such that |T'(w)| <M for allw € A?

Solution. (a) Let w = u+ iv, then we have
w v ) )
T =Im <— +Ccoshw> = — 4+ Csinhusinv.
/4 T
Then

) 1 .
T, = Ccoshusinv, :E+Cs1nhucosv

T,
T, = Csinhusinv, T,, = —Csinhusinv

Thus
AT =T,,+T,, = Csinhusinv+ (—Csinhusinv) = 0.

Hence, T is harmonic on A.
Notice that on I'j, we have that v =0 and so 7 = 0. Finally, on I'; we have that

v=ﬂJMnT:%+O=L
(b) If C = 0, the solution is % and |T| < 1 on A. If C # 0, considering the point

T,
wo= U+ b we have

1
T(wy) = E—f—Csinhu
1
= 5(1+Ce“+Ce*“)

For a function u sufficiently large

C
T0)| > STt

which tends to o as y — oo. Therefore, 7" is unbounded on A. [ |



[3. Complex Integrals

3.1 Contour integrals

1. Evaluate the following integrals:

2 2
(a) (t2+i) dt;
/ln/4 )
(b) /0 2 gy

(c) / te” dt when Re(z) < 0.
0

Solution.
(a)
2 5 2
/ GGE) dt:/ (t* + 2t + %) dr
1 1
o N 2it3 26
5 3 .5
(b)
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(©
T 1= ot
te“dt = — | td(e”)
0 ZJ0
1 2t |*° ” 2t
=—| te* ‘0 - e“dt
Z 0
1/.. 1/,
= <hmteZ’ — = (hm e — 1))
Z \I—eo Z \t—oo
1
)
where
limze? = lime¥ =0
f—ro0 f—ro0
because
lim |re?| = lim te'R°?) = lim — = — lim =0
t—o0 t—oo t—o0 @ X t—o0 xe M

by L’Hospital (see Problem 8 in section 2.2), and

lim |¢¥| = lim ¢'Re(@) =
t—o0 f—o0 f—yo0 @ X

as x = Re(z) < 0.

2. Find the contour integral [, zdz for
(a) vis the triangle ABC oriented counterclockwise, where A =0, B=1+1i and
C=-2;
(b) 7yis the circle |z — i| = 2 oriented counterclockwise.

Solution. (a)
/ZdZZ/ zdz+ zdz+ zdz
y AB BC CA

:/]t(1+i)d(t(l+i))

+/ =D+ =20d((1—1)(1+i) —20)

+/ 20 =1)d(=2(1—1))

1
—/ 2tdt+/ ((2i— +10t)dt+/ 4(r—1)dt
0
=14+Q2i—4)+5-2=2i
(b)

2 .
/ i+2etd(i+2e") = 2l(—l+2€ e dt = 8.
0 0
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3. Compute the following contour integral

/Zdz,
L

where L is the boundary of the triangle ABC with A =0, B =1 and C = i, oriented
counter-clockwise.

Solution.
/LZdz:/ABZdz+ BCZdz+/CAZdZ
:/lfdt—f—/l(1—l)+tid((1—t)+ti)
0 0
1—. .
+/0 A —0)id((1—1)i)
1 1 1
:/O tdt+(—1+i)/0 ((1—t)—ti)dt—/ (1—1)dr =i

0

4. Evaluate the contour integral

/Cf(z)dz

using the parametric representations for C, where

and the curve C is
(a) the semicircle z = 2¢ (0 < 6 < 7);
(b) the semicircle z = 2¢ (1 < 6 <27);
(c) the circle z =2¢® (0 < 6 < 2m).

Solution.
(a)
T 4%9 1 : 0 . -
/C Fl2)dz = /0 (2% = (26 | =
(b)

21 462i9 -1 ) . 5 '
/Cf(z)dz = /ﬂ Wd(Zele) = (26219 — l)|nn = —7i

(c) Adding (a) and (b), we have —27i.
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. Redo previous Problem 4 using an antiderivative of f(z).

Solution. For (a),
2

Z
/Cf(z)dZZ 5
=—(In2+mi—1In2) = —mi.

-2
— ( lim Log(z)—Log(2))
2 I&?z);o

/Cf(z)dz=§
=—(In2—(In2 — mi)) = —mi.

2
— (Log(Z)— lim Log(z))

-2
-2 1m(2)<0

. Let Cg be the circle |z] = R (R > 1) oriented counterclockwise. Show that

Log(z? InR
/ 0e(z >dZ’ <an (H_n)
Cr < R

and then
L 2
o [ 2
R—eo JCp Z

Proof. Using expression (1.1) in Problem 5, we have
[Log(%)| < |In|2|| + 7 =2InR+7

for |z = R > 1. Therefore,

Log(z? 2InR
/ oggz >d2’§27FR (H_zn)
Cr Z R

_ 4 w/2+InR <dx T+InR '
R R
And since

lim 4n(”+lnR> — 47 lim L =0
R R

R—oo

by L’Hospital (see Problem 8 in section 2.2),

L 2
lim / G
R—o0 JCp Z
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7. Without evaluating the integral, show that
[
cz+z+1|7 16

where C is the arc of the circle |z| = 3 from z = 3 to z = 3i lying in the first quadrant.

Proof. Since
Z+z+1| > 2| — [t - 1=z’ —[z| - 1=5
for |z] =3,
1
> — |z
ZZ+z7+1 5
Therefore,

/ dz 6r /1 37 9m
— = <=z )==2< =
c2+z7+1|~ 4 \5 10 16

8. Evaluate the integral [-Re(z)dz for the following contours C from —4 to 4:
(a) The line segments from —4 to —4 —4ito 4 —4ito 4;
(b) the lower half of the circle with radius 4, centre 0;
(c) the upper half of the circle with radius 4, centre 0.
(d) What conclusions (if any) can you draw about the function f(z) = Re(z) from
this?

=

Solution. (a) Notice that the contour C consists of three contours:
i. C| defined by z(1) = —4 —4it, with 0 < ¢ < 1, followed by
ii. C; defined by z(1) = —4(1 —2t) — 4i, with 0 <t < 1, and finally
iii. C; defined by z(r) =4 —4i(1 —1¢), with0<r <1
Thus

£j®&=lwg%f®&—/ a+/ &+/ Jdz (D)

where f(z) = Re(z). Recall also that [ f(z)dz = f f(z(2))Z (¢)ds.
Now, for C; we have that 7/(r) = —4i. Then

| f2)dz= /01(—4)(—41')dt - 161’/01dt - 16it‘(1) — 16i.
For C; we have that 7/(r) = 8, then
/sz(z)dz - /[ 4(1—20)) (8)dt
- /(64t—32)d

_ 64/ tdt—32/ dt

— e ’ —321“
— 32-32-0
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Finally for C3 we have that 7/(¢) = 44, then

1 1 1
f(z)dz :/ (4)(4i)dt = 16i/ dt = 16it‘ = 16i.
G 0 0 0
Therefore, using expression 3.1, we obtain
/ Re(z)dz = 32i
C

(b) In this case, the contour C is defined by
(1) = 4" = 4cost + 4isint,

with 7 <t < 27. Here we have 7/(t) = 4ie'.
Thus

/CRe(z)dz = /2”(4cost)(4iei’)dt

T

o _
= 16i/ coste dt

T

21 21
= 16i/ cos?tdt — 16/ costsintdt
b4

V3

2
2n : 2t

_ 8i/ [+ cos(21)]dr — 16 2

T

(2 2
oy 2]

T

—0=8mi

(c) Finally, in this case, the contour C is defined by
z2(t) = —4e" = —4cost + 4disint,

with 0 <t < . Here we have 7/(t) = 4ie™".
Thus

T .
/ Re(z)dz — / (—4cost)(die " )dr
C 0
T .
= —16i/ coste "dt
0

T T
= —16i/ cosztdt+16/ costsintdt
0 0

T

T . 21?
_ —Si/ [1+cos(21)]d + 16 22
0
. 2 ﬂ
- —8i[t+¥] +0=—87i
0

(d) We have seen that the integral along each contour has a different value.
The reason is that the function f(z) = Re(z) is not analytic on any domain containing
any of the contours discussed in parts (a), (b) and (c¢). In fact, this function is nowhere
analytic.

|
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3.2 Cauchy Integral Theorem and Cauchy Integral Formula

1. Evaluate the following integrals, justifying your procedures. For c) and d) you
should also state why the integral is well defined (i.e., independent of the path taken).

(a) / , where C is the circle with radius 1/2, centre 1, positively oriented;

(b) / (e + - ) dz, where C is the lower half of the circle with radius 1, centre 0,

negatively oriented;

(c) / Zezzdz;
C

(d) / coshzdz.
c

Solution. (a) Notice that

Thus

2 1 1
d —/—d —/—d
/cz2—1 T ez czt1©

1
/ ——dz=2mi
cz—1

by Cauchy integral formula, f(zo) = 2m sz zodz'

On the one hand,

On the other hand, since 1/(z+ 1) is analytic on and inside C, then

1
[ Lm0
cz+1

by Cauchy’s Theorem. Therefore,

2
dz =2mi.
/czz— 1

(b) Notice that the integrand f(z) = e* — 1/z is analytic on C. The function

F(z) =¢*—Logz

serves as an antiderivative of f(z). Here Logz is a branch of the logarithm chosen
with the branch cut on the positive imaginary axis. That is,

5
Logz=Inr+i60, <r>0 2<9<7ﬂ)

Thus
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(c) Since the integrand f(z) = 267 is analytic, the integral is path independent. An
antiderivative of f(z) is

Thus

I 1

T2 2

Zzi
2 e
/MWZT
¢ 0

(d) Since the integrand f(z) = coshz is analytic, the integral is path independent. An
antiderivative of f(z) is
F(z) = sinhz.

Thus

27i
/ coshzdz = sinhz| = sinh(27i) — sinh(7i) = 0.
C

i

. Let Cg be the circle with radius R, centre 0, positively oriented. Show that

lim CrkAT g
R—e Jop (22 +4) (22 422 42) '

Use this fact to prove that

2 +4z+7
3 5 dz=0
c(ZZ+4)(2+2z+2)
where C is the circle with radius 5, centre 2, positively oriented.
Solution. Recall that for a contour C of length L and a piecewise continuous f(z) on

C, if M is a nonnegative constant such that | f(z)| < M for all points z on C at which
f(z) is defined, then

‘/Cf(z)dz < ML.
Now, consider the function
244747
f@)= gt :
(2+4) (2> +2z+2)
For |z| large, we have that
‘ 1+4+ 3% 1
£(2)| s

| 2

‘1+§2 2+2:+2) 2
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On the circle Cg we have that |z| = R. Thus, for R large we have that

2
1) < 2
Since the length of Cg is 2R, then
2 47
d ML= —=2nR = —
. fz)dz| < e R
which tends to 0 as R — oo.
On the other hand, notice that he singularities
71=2i, p=—-2i, 3=—1+1i, and zgy=—-1—1
of the function
£z) = 2 +4z+7
(24+4) (2> +22+2)
are inside C and since f(z) is analytic on the annulus defined by C and Cg with
R > 7, then
/ f(2)dz= / f(2)dz.
c Cr
Thus
lim / f(z)dz= lim [ f(z)dz=0.
R—o JC R—00 JCp
Hence
/ f(z)dz=0.
c
|
3. Evaluate

sinz
= _dz,
/c (z+1)7

where C is the circle of radius 5, centre 0, positively oriented.

Solution. Recall the extension of the Cauchy integral formula:

£ (29) = n! /chZ

T ori (z—zo)" 1

Considering the function f(z) = sinz, which is analytic on C, we have

f(6)(_1)_ﬂ/ﬁ$_ﬂ/ﬂ
C2miJo (z—(—=1)0F 2w Jo (z+ 1)

Since f(%)(z) = —sinz, then

/ sinzg _/ sinz __@Sin(_l)_Zﬂtsin(l),
ct1)  Je(z—(=1)5+T ~ 6! G



58

Chapter 3. Complex Integrals

4. Let C be the boundary of the triangle with vertices at the points 0, 3i and —4 oriented

counterclockwise. Compute the contour integral
/ (e* —7)dz.
C

Solution. By Cauchy Integral Theorem, f.e*dz = 0 since C is closed and & is entire.
Therefore,

/(eZ—Z)dZ:—/ZdZZ—/ Zdz—/ Zdz—/ 7dz
C C Pipz P2D3 D3Pt

1 1
— / (=3ir)d(3it) — / (=3i(1 —1) — 40)d(3i(1 — 1) — 41)
0 0
1
- [ -nd(=1-n)

9 7
:—5—5—121'—#8:—121'
where p; =0, pp = 3i and p3 = —4. [

. Compute

1
/ 7dz
-1
where the integrand denote the principal branch

7' = exp(iLogz)

of 7' and where the path of integration is any continuous curve fromz = —1to z = 1
that, except for its starting and ending points, lies below the real axis.

Solution. Note that z! /(i 4 1) is an anti-derivative of z’ outside the branch locus
(—o0,0]. So

1 . i+1 i+1
/z’dz: e lim1 T
-1 e+ L Iri?;;<01+
1 _exp((i—l—l)(—n’i))
i+ i+1
1+e®™ 146"
_ e ey
i+1 2
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6. Apply Cauchy Integral Theorem to show that

/Cf(z)dz =0

when C is the unit circle |z| = 1, in either direction, and when
3
z
a) f(2) = 5—=;
(b) f(Z) — etanz;
(©) f(z) =Log(z+3i).

Solution. By Cauchy Integral Theorem, [,_; f(z)dz = 01if f(z) is analytic on and
inside the circle |z| = 1. Hence it is enough to show that f(z) is analytic in {|z| < 1}.
(a) f(z) is analytic in {z # —2,—3} and hence analytic in {|z| < 1}.
(b) f(z)isanalyticin {z:cosz=0} ={z=nn+n/2,n € Z}. Since |[nw+ /2| >
1 for all integers n, f(z) is analytic in {|z] < 1}.
(c) Log(z) is analytic in C\(—e,0] and hence Log(z+ 3i) is analytic in C\{z:
z=x—3i,x € (—e,0]}. Since |x —3i| > 1 for all x real, f(z) is analytic in

{|z] < 1}.
[ |

7. Let C; denote the positively oriented boundary of the curve given by |x| + |y| =2
and C, be the positively oriented circle |z| = 4. Apply Cauchy Integral Theorem to

show that
/Cl f(2)dz= /sz(Z)dz
when
@) f(z)= ZZ;FTll;
() /(z) = %
© f2) = Zzﬂ%

Solution. By Cauchy Integral Theorem, [¢, f(2)dz = ¢, f(2)dz if f(z) is analytic
on and between C; and C,. Hence it is enough to show that f (z) is analytic in
{Ix|+y| >2,|z] <4}

(a) f(z) is analytic in {z # %i}. Since +i € {|x|+ |y| < 2}, f(z) is analytic in
{lx]+y| > 2,]z| <4}.

(b) f(z) is analytic in {z : sin(z/2) # 0} = {z # 2nmw : n € Z}. Since 2n7 € {|x| +
|y| <2} for n =0 and |2nm| > 4 for n # 0 and n € Z, f(z) is analytic in
{lx]+y| > 2,]z| < 4}.

(¢) f(z) is analytic in {z # —1,—5}. Since —1 € {|x|+ |y| < 2} for n = 0 and
| = 5| >4, f(z) is analytic in {|x| + |y| > 2,|z| < 4}.

|
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8. Let C denote the positively oriented boundary of the square whose sides lie along

the lines x = 2 and y = 4-2. Evaluate each of these integrals
@) zdz

cz +ﬁ

) cos Zdz,
tan z/2

(©) / —7r/2

Solution. (a) By Cauchy Integral Formula,

zdz
— =2mi(—1) = —2mi.
/cz+1 ( )

(b) By Cauchy Integral Theorem,

coshz coshz coshz
/ 5 dz:/ 5 dz+/ 3 dz
c-+z lz|=r 2°+2 lz+1]=r 2°+2

for r = 1/2. By Cauchy Integral Formula,

h h
/ css Zdzz27ri cosh(z) =27
o|=r 22 +2 z+1 |
and
h h
/ c;)s 24z — oi SO802 = —2micosh(—1).
let1|=r 27+ 2 ¢ =
Hence

coshz
dz =2mi(1 —cosh(—1)).
| S dz =i (-1))

(c) Note that tan(z/2) is analytic in {z # (2n+ 1) : n € Z} and hence analytic

inside C. Therefore,

/C%dz = 2mitan(n/4) = 2mi

by Cauchy Integral Formula.
[ |

9. Find the value of the integral g(z) around the circle |z — i| = 2 oriented counterclock-
wise when

(@) g(z) =
(b) g(z) =

2_|_4_

2(22+4)



3.2 Cauchy Integral Theorem and Cauchy Integral Formula 61
Solution. (a) Since —2i ¢ {|z—i| <2} and 2i € {|z—i| <2},
(Z+2i)_1 i 6l T
Zdz:/ ————dz=2mi(2i+2i) ==
/z—i|2g( ) lo—i|]=2 2—2i ( ) 2
by Cauchy Integral Formula.
(b) By Cauchy Integral Theorem,
/ 8(z)dz = / 8(z)dz+ 8(2)dz
|z—i|=2 |z|=r |==2i|=r
for r < 1/2. Since
1 i
7)dz =21 —— =—
and
i
2)dz =27 - = ——
/z—Zi—rg( ) 2(z+2i) |,y 4
by Cauchy Integral Formula,
/1]
7)dz = —
/Z _i|:2g( ) 2
|

10. Compute the integrals of the following functions along the curves C; = {|z| = 1}

and C; = {|z—2| = 1}, both oriented counterclockwise:

@ 2
sinhz

(2z—22)%

(b)

Solution. (a)

dz Q-z' .
/ /lz—l BT g —omi2—0) ' = mi

d=122—2% z
(b)
sinhz (sinhz)(2—z) 2
—dZ:/ dZ
/|z|:1 (2z—2%)? jel=1 2

. o i

=2mi((sinhz)(2—2)"7) -

z=0 2
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11. Show that if f is analytic inside and on a simple closed curve C and zg is not on C,
then
() f(2)
—1!/ dz = +—1!/—d
(n=1) clz—20)" (mtn=1) ¢ (z—z)m ™
for all positive integers m and n.
Proof. If zg lies outside C, then
(m)
/ ™) dz:/ & 4o
c (z—z0)" c (z—zo)mt
by Cauchy Integral Theorem, since f"™)z/(z—zp)" and f(z)/(z—z0)™ " are analytic
on and inside C.
If zg lies inside C, then
F™@) e plmtaet)
(=)t e = (@)Y, = )
and
f(z) (m+n—1
+ —1!/—d: m+n—1)
(m+n—1) TR f (20)
by Cauchy Integral Formula. Therefore,
f"(2) f(z)
—1!/—d: + —1!/—d.
(n—1) S p— z=(m+n—1) - Z
|
12. Let f(z) be an entire function. Show that f(z) is a constant if |f(z)| < In(|z| + 1) for

all z € C.

Proof. For every zp € C, we have

f/(ZO) — L/Z_ZO_R f(Z) de

C2mi (z—2z0)

for all R > 0. Since
f(z)

(z—20)?

for |z —z0| = R,

In(|z] +1)
RZ

In(R+ |zo| + 1)

< <

1 f(z) In(R+ |z0]) + 1
/

20)| = | =— dz| < )

7= 5 | =
And since
In(R 1 1

lim n(R+ [z0] + )zlim—z(),
R—oo R RﬁWR+|ZO|+1

by L’Hospital (see Problem 8, section 2.2), we conclude that |f’(z9)| = 0 and hence
f'(z0) = 0 for every zg € C. Therefore, f(z) is a constant. [ |
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13.

14.

Let Cy be the boundary of the square
{xl <Nm, [y| <N},

where N is a positive integer. Show that

d
lim £

3 =0
N—oo Joy 2°€OSZ

Proof. When z=x+yi € Cy, either x = =Nmw or y = =N7. When x = £N,
|cosz|* = (cosx)? 4 (sinhy)? > (cosx)? = (cos(Nm))? =1

When y = =N,
|cosz|? = (cosx)? + (sinhy)? > (sinhy)? = (sinh(N7))? > 1

Therefore, | cosz| > 1 when z € Cy. We also have |z| > N& when z € Cy. Therefore,

1 1
Z2cosz| — N3m3
and
dz 1 SN 8
< d7|l = —— —
/ch3cosz — N373 /cN| 4 N3n3  N2x?
Since
AlfigioNznz =0

we conclude

d
lim £

3 =0
N—oo JCy 2°€OSZ

Let Cy be the boundary of the square
T T
{M<na+2 pl<va+ 2]
2 2
oriented counterclockwise, where N is a positive integer. Show that

. dz
lim 5 =0.
N—oo Cy 278Nz

[Refer to: problem 6 in section 4.3]
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15.

Proof. When z=x+yi € Cy, eitherx=+£(Nn+7m/2) ory=+(Nm+7m/2). When
=+(Nm+m/2),

| sinz|*> = (sinx)? 4 (sinhy)? > (sinx)? = (sin(N7w + 7/2))? =
Wheny = +(Nn+7/2),

|sinz|? = (sinx)? 4 (sinhy)? > (sinhy)?
= (sinh(Nm+ 7/2))? > (sinh(37/2))? >

Therefore, |sinz| > 1 when z € Cy. We also have |z| > N& + /2 when z € Cy.
Consequently,

1 1
Z?sinz| = (N+1/2)%n?
and
dz 1 8(N+1/2)x 8
/2- < 22/|dz,: 2.2
cy z2sinz| = (N+1/2)?m? Jcy (N+1/2)?’mn> (N+1/2)x
And since
8
Iim ——=0
N (N +1/2)7
we conclude
d
lim £ =0

N—oo CNZ smz

Compute the contour integral

2011
/ < dz
¢ 72011 3 72010 4 ,2009 1 1 “%

where C is the circle |z| = 2 oriented counter-clockwise.

Solution. First, we show that all roots of

L2011 4 2010 4 2009 | _

lie inside |z| < 2. Otherwise, suppose that
L2011 4 2010 4 2009, | _

for some |z| > 2. Then

11,1
I+ -4 5+ 557 =0
z 72 72011
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and hence
| — 1 1 1 1 1 n 1
N H |Z\2 |Z’2011'
When |z| > 2,
1 1 n 1 1 n 1 N 1 <
H ’Z’2 |Z|2011 = T4 " 92011 :

This is a contradiction. Therefore, all roots of
L2011 4 2010 4 2000 | _

lie inside |z| < 2. It follows that

2011 2011
/ < dz—/ L dz
22011} 72010 72009 4 = 22011 4 72010 72000 4

for all R > 2 by CIT.
We have

Z2011 1 Z20()9 741

+

72011 1 72010 4~ ,;2009 11 — 1_2 2(2201T 72010 12009 4 1)

Since

22009—Z+1 R2009+R+1

2(201T 72010 12009 1 1) ‘ = R(R2OTT — R2010 — R2009 _7)

for |z| =R,

2R 4R +1)

/ £2009 _ .
=R Z(Zzoll + 72010 4 ;2009 - )
and hence

lim 2zt 1 dz=0
R0 12— 2(2200T + 72010 4 72009 )4 =T

And we have

/ dz=0and d = 27i.
|z|=R lz]=R Z
Therefore,
L2011
/c 2071 2010 4 2009 42 = —2%.

= R2011 _ R2010 _ 2009 _ |
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16. Calculate
/ 72008 o
cz220 4z +1
where C is the circle |z| = 2 oriented counter-clockwise.

Solution. First, we prove that all zeroes of z2°° +z+ 1 lie inside the circle |z| = 2.
Otherwise, z2°° + 741 = 0 for some |z| > 2. Then

1 1
24 41=0= 1+ 008 2009 = O
On the other hand,
1 1 1 1

>1 >1

= |Z|2008 B |Z|2oo9 = >0

1
1+ =555 + =500
‘ Z2008 Z2009

~ 22008 £2009

for |z| > 2. Contradiction. So all zeroes of 7% 4z + 1 lie inside the circle |z| = 2
and hence 7298 /(2299 4z + 1) is analytic in |z| > 2. Therefore,

2008 £2008
/ 2000 dz = / 2000 dz
loj=2 2" +z+1 lo|=R 257" +z+1

for all R > 2 by Cauchy Integral Theorem.
We observe that

Z2008 1 z4+1

2441z (@ 4z41)

For |z| =R > 2,
z+1 R+1
2299171 1)| = R(RDOO —R—1)
and hence
1 2n(R+1
/ 2005 - dz| < 2009( +1) :
|z|=R Z +z4+1 R —R—1

It follows that

im [ SPL g
R—eo J|z|=k 2209 +-z+ 1

Therefore,

2008 2008
/ < dz = lim / < dz
lzj=2 22009 +z+ 1 R0 J|7| =k 22009 +z+ 1

) dz .
= lim — = 27mi.
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17. Let C be the circle |z| = 1 oriented counter-clockwise.

(a) Compute

1
—d
/CZ2—81+1 ¢

(b) Use or not use part (a) to compute
T 1
—Fdo
/o 4 —cos0

Solution. The function
1 B 1
72 —8z+1 (z—4—/15)(z—4++/15)

has a singularity in |z| < I at z =4 —+/15. Therefore,

1 1
—— dz=2mi lim
/CZZ—8Z+1 et yT5 (z—4—/15)(z— 4 +/15)
- ( 1 ) i
= 1 - _
2=4=V15/ l—4-vi5 15

That is,

1 7 de'®
cz>2—8z+1 _xe2if _8eif 4 ]

T ei@
=i [ o g1

T
[T 1
=if e
i [T 1
—— [ ————db
2 )-n4—cosO

] ”—1 dao
——1/0 4—cosO

Therefore,

T

T 1
do =
/0 4 —cosB V15

18. Compute the integral

/” dx
72— (cosx+sinx)
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Solution. Let z = e™*. Then dz = ie"dx, dx = —idz/z and hence

/ dx B dx
—x2—(cosx+sinx) Joz2— (el +e ¥)/2— (el —e~¥)/(2i)

B —idz
=12z— (22 +1)/2— (2= 1)/(2i)
= (i—1) N —
=1 2% = 2(1 +i)z+i
dz

= (i—1)

=1 (z—z1)(z—22)

_2mii=) s

2 —1

where z; = (1 +v/2/2) 4+ (1 ++v/2/2)iand zo = (1 —/2/2) + (1 —/2/2)i.

19. Let f(z) be an entire function satisfying

[f (@1 +22)| < |f ()] +1f(z2)]

for all complex numbers z; and z;. Show that f(z) is a polynomial of degree at most
1.

Proof. We have

i S+ ) + ki}fm)
:f<a+zz>+ki3f<zw
=f(21+12)+f(23)+ki1f(2k)
=f(Z1+Z2+Z3)+ki4f(Zk)
T (kilxk>
Therefore, _
XSG = ) S Ga) b F o) = e bt 2 = (Z )

for all complex numbers z1,z2,...,2,. Particularly, this holds forz; =z, = ... =
m=2z/n

nf (2) = f(2)
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for all z € C and all positive integer n. Let M be the maximum of |f(z)| for |z| = 1.
Then

@ =n|f (%) <nm

for all z satisfying |z| = n.
By Cauchy Integral Formula,

f”(ZO) — i./ld_n Lz)dz

i (z—20)3
for |zg| < n. Since

f@) |_ 1@l . nM

(z—20)3|  lz—z0l = (n—lz0])

3 3

for |z| = n and |z0| < n,

1 f(z) ‘ 2n’M
— 2 _dz| <
/z=n( 3] =

mi 2—20) (n—lzo])?

And since

2n°M 2M
lim —— = 1im#3:o,
n—es (n—|z])?  n—ee (1—|z0l/n)

we conclude that f”(zo) = 0 for all zy. Therefore, f'(z) = a is a constant and

f(z) = az+ b is a polynomial of degree at most 1. [ |

20. Let f(z) be an entire function satisfying that |f(z)| < |z|*> for all z. Show that
f(z) = az? for some constant a satisfying |a| < 1.

Proof. For every zp € C, we have
3! / f(2)
/1!
20) = — ————dz

I =5y le—20/=R (2 —20)*
for all R > 0. Since
f(z)

4

2 2
<l o (Rt o))
(z—2z0)

— R+ = R4

for |z —z0| = R,

1" (zo)l =

! R 2
B[ T S
271 J|z—z|=r (2 —20) R

And since
2

6(R+20))? o\,

lim = lim 6 1+
R—so0 R3  R—wR R
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21.

we conclude that | /"' (zo)| = 0 and hence f"'(zo9) = 0 for every zg € C. Therefore,
f"(z) =0, f"(z) = 2a, f'(z) = 2az+b and f(z) = az* + bz + c for some constants
a,b and c.

Since |f(z)| < |z|%, |az® + bz +c| < |z)? for all z. Take z = 0 and we obtain |c| < 0.
Hence ¢ = 0. Therefore, |az> + bz| < |z|* and hence |az + b| < |¢] for all z. Take
z =0 again and we obtain |b| < 0. Hence b = 0. So |az?| < |z|* and hence |a| < 1.
In conclusion, f(z) = az? with a satisfying |a| < 1. |

Let f(z) be a complex polynomial of degree at least 2 and R be a positive number
such that f(z) # 0 for all |z] > R. Show that

dz
— =0
/Izl—R f(z)
[Refer to: problem 5 in section 4.3]

Proof. Let f(z) =ap+aiz+---+ayz", where a, # 0 and n = deg f. Since f(z) #0
for |z| > R, 1/f(z) is analytic in |z| > R. Hence

/|z|—R % B /|z|—r J%

for all » > R by Cauchy Integral Theorem.

Since
1£(2)] > lanllzl" — |an-1||z]"~" =+ = |ao]
we have
‘ 1 1
= i
F@) |7 lan|r" = |an—1[r"=" =+ —|ao|
for |z| = r sufficiently large. It follows that
/ dz < 2nr
cl=r f(2)| 7 lan|r* —|an—1[r"~1 — - —lag]
And since n > 2,
. 2nr
lim
P Janl P Jag 17T = g
21
re nlan| 1 — (n— D]ap_1 |/ — - — |aj|

by L’Hospital. Hence

dz dz
BT, ¥ =2 =0
/|Z|:R @) r5904|=rf(z>
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3.3 Improper integrals
1. Compute the integral

/°° xdx
0o X3+1°

Solution. Consider the contour integral of z / (z3 + 1) along Lg = [0,R], Cr = {z =
Re":0<t<2m/3} and Mg = {162”’/3 :0 <t < R}. By Cauchy Integral Formula,

/zdz+/ zdz_/ zdz_/ zdz
w2+l Jgd+l Impd+1 z—emi/3|=1/2 23+ 1

By Cauchy Integral Formula,

/ zdz 2miexp(wi/3)
lz—emi/3|=1/2 B+1 (exp(mi/3)+1)(exp(mi/3) —exp(—mi/3))
_ 2mexp(wi/3)
(exp(mi/3)+1)V/3
For z lying on Cg,
z R

<
z3+1‘_R3—1

and hence

/ zdz < 27R
G +1] 7 3(R-1)

It follows that

d
lim/ -0
R—oo Jop 27+ 1

And
zdz R xdx
=exp(4mi/3 /
/MRZ3+1 p(4i/3) 0 x3+1
Therefore, we have
xdx 2mwexp(mi/3)

(1 —exp(47fi/3))/0 B+l (exp(mi/3)+1)V/3

and hence

/°° xdx B 27
0 X¥+1 33
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2. Compute the integral

© cosx
d
/o xt+1 *
Solution. Since cosx/(x*41) is even,

/°° CcOSX 1 /= cosx
—dx == ———dx.

Actually, we have

* Cosx 1 [~ ¥
di=- [ -
/0 A 2/_°<,x4+1 o
since e™ = cosx -+ isinx.

Consider the contour integral of ¢’ /(z* + 1) along the path Lg = [~R,R] and Cg =
{|z| = R,Im(z) > 0}, oriented counterclockwise. By Cauchy Integral Theorem, we

have
eiz eiz
dz+ / dz

174 elZ
; .
lz—emi/d|=1/2 2+ + 1 —emi/d=1/2 74+ 1

By Cauchy Integral Formula,

oi2 2iel(V2Hiv2)/2
/Ize”i/4|=1/2 A+ ldz - (en:i/4 _ e37ri/4)(e7ri/4 _ e—n:i/4)(e7ri/4 _ e—37ri/4)
_ a1 —i)exp((—V2+iv2)/2)
2V2
and similarly,
[ et m(l+iexp((—v2-iv2)/2)
|e—e3mift|=1/2 24 + 1 °T 2V2
Therefore,
e e e~ V2/2 )
/LR AT ldz—i- . mdz = T(COS(\/E/Z) +sin(v2/2)).

For z lying on Cg, y = Im(z) > 0 and hence |¢?| = ¢ < 1. Hence

e 1
<
z4+1‘ “RY*—1

and it follows that

/ et Jol < TR
A1 TR
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/3

Since

li
RowRF—1

0,

we conclude that

iz
li dz=0.
Ro3e it +1 ¢

Therefore,

{es)

COSXx

SO =2 &4
) A1 2/ x4+1x

2R—>oo/LR Z —|—1

e~ V2/2 V2
= 2—\/5 (COS (






[4. Series

4.1 Taylor and Laurent series
1. Find the Taylor series of the following functions and their radii of convergence:
(a) zsinh(z?) atz =0;
(b) et atz=2;
Z+z

(C) m atz=—1.

Solution. (a) Since & =Y ,7"/n!,

27
Zsinh(z2) =z (L)
2
] [CS] 21’!
_Z . nZ_
2 (Z:O n! nz_: n! )

n=0

oo Z4m—|—3

= (2m+1)!

n—
1— ( 1)n 2n+1

n!

where we observe that (1 — (—1)")/2=0if n=2miseven and 1 if n =2m+ 1
is odd. Since f(z) is entire, the radius of convergence is .
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(b) Letw=2z—2. Thenz=w+2 and
=" =% = —:i

Since f(z) is entire, the radius of convergence is oo.
(¢) Letw=z+1. Then

24z _wz—w_l_ 3 N 2
(1-22 2-w)2  2—w (2—-w)?
We have
3 3 1 3w = 3w
2w 21—(w/2)__§,;)7:_,;)2n+1
and
2 ([ 2\ 1 ’
2-w)2 \2—-w/) \1-(w/2)
/
© oo nwn—l
-(£%) L™
n=0 n=
= (n+1)w"
:nz::o 2n+1
Therefore,
2 oo (o)
“+z 3w (n+ 1w
(1 z)2:1 Lot Lo
n= n=0

Since f(z) is analytic in |z+ 1| < 2 and has a singularity at z = 1, the radius of

convergence is 2.
|

2. Find the Taylor series of (cosz)? at 7 = 7.

Solution. Let w = z— m. Then

(cosz)? = (cos(z+ 7))? = (cosw)?

oo (_1)n22n71W2n
L G
(_1)n22n—1(z_n.)2n
(2n)!

13
~—~

—~

S

S

S~—

N =

oo (_1)n22n—1w2n B 00
(2n)! =1+)

n=1




4.1 Taylor and Laurent series 77

3. Let f(z) be a function analytic at 0 and g(z) = f(z%). Show that g**~1)(0) = 0 for
all positive integers n.

Proof. Since f(z) is analytic at 0, f(z) = ¥,;_oa»z" in some disk |z| < r. Therefore,
g(z) = f(?) = £ yauz*" in |z] < /7 and hence

o (m) 0o
y 0= ¥ e
m=0 n=0

And since the power series representation of an analytic function is unique, we must
have g™ (0) =0 for m is odd, i.e., m = 2n — 1 for all positive integers n. |

4. Find a power-series expansion of the function f(z) = about the point 41, and

calculate the radius of convergence.

Solution. Notice that

o 1
3—z  (3—4iz)—(z—4i)
B 1 1
34 4
3—-4i
| - —4i\" —4i
= Z £ l, for £ l_ 1
3—4i = \3—-4i 3—4i
That is, for |z —4i| < |3 —4i| < 5. Thus
o (z—4)"
2_: 3 — 4+l
with radius of convergence 5. |

5. Find a Laurent-series expansion of the function f(z) = z~!sinh(z~!) about the point
0, and classify the singularity at O.

Solution. For g(z) = sinhz we know that

(n) ( sinhz, when n is even;
Z =
8 coshz, when nis odd

Thus

{sinh(O) =0, whenniseven;
1

, when nis odd

In this case, the Maclaurin series for g(z) = sinhz is:

Z3 ZS
TR R



/8

Chapter 4. Series

The Laurent series for g(z~') = sinhz ™! is:

L Ly Ly
z 31723 518

Thus Laurent series for f(z) =z 'g(z™') =z 'sinhz ! is

1 n 1 n 1
22 3l 510
Notice that f(z) = z~!sinhz~! is analytic for z # 0, which means that z = 0 is an

isolated singularity and is, in fact, an essential singularity.
[ |

. Consider the function

sing
9= =1

Classify the singularity at z = 0 and calculate the residue.

Solution. Notice that f has an isolated singularity at z = 0. Thus, expanding numer-
ator and denominator in Taylor series we have

35 7
2oz d
fz) = —3L st 7
6 12 I8
st am e
2 4 6
-l AR 4
Z( —§+§—$+ >
- Z6 226 2Z12
2\ 4 T el
) 2 &P
I S TR I T
- 5 6 12
R S S
4! 6!
-2 2 &2 1
- _5< EETRTIRE TS 6 12
z 3 5! 7! { 27 27
TR
Let
_2 2Z6 2Z12
T T
Thus we have
-2 2 2P 1
e O T HUU I 4.1
f@) z5< TR TR TR A s, 1)

where g(z) is analytic and nonzero at z =0, in fact, g(0) = 1/12. So for € sufficiently
small, if |z| < €, then |g(z)| < 1. Thus for |z| < min{e, 1}, we can expand
1
1—2%(z)
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in a geometric series. Hence

-2 Z2 Z4 Z6 6 12 2
f(Z) = Z_S 1—54‘5—%4- . <1+Zg(Z)+Z (g(z)) +)
-2 2 2 2z 2
= <Z—5+3!—Z3—5—!Z+ﬂ+ ) <1+Z6g(2)+212(g(2)) +>
So the residue of fatz=01is —2_ 1 [ |
! ¢ 51 60

7. Prove that the coefficients ¢, in the expansion

Z cn"

1—z 2 -

satisfy the recurrence relation co = ¢y =1, ¢, = ¢,—1 +¢,—2 for n > 2. What is the
radius of convergence of the series? What would be a good name for the ¢,,’s?

Solution. Let S = Z cnZ" for z such that the series converges.
n=0
Thus

(o] o)

8 = Z CnZn+1 = Z cn—lzn

n=0 n=1

and

Then we have
S—z8—72S = Z cpd' — Z 12" — Z Ccp7"

= c¢co+ci1z+ Z cn?' —coz— Z cn17t — Z cpn7"
n=2 n=2 n=2

= co+(c1—co)zt Y (ch—cn1—Cn2)7"
n=2

Now, we know that

then
S—z§—72S = 1

Thus
co=1, ¢i—co=0, and ¢, —cy,_1—¢c,_2=0 for n>2.

Therefore co =cy =1,and ¢, = ¢, 1+ ¢, forn > 2. |
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8. Find the Laurent series of the function

z+4
@)= 2(2+3z+2)
in
(@) 0< |z < 1;
(b) 1<zl <2;
(©) |z >2;
d 0<|z+1]< 1.

Solution. We write f(z) as a sum of partial fractions:

z+4 5 2 3 1

N M N R .
22(z2+3z+2) 2z 72 z+1 2(z+2)

For 0 < |7] < 1,
3 oo
_:32: —1)n "
z+1 nzO( )’z

and

Therefore,

5 2 > non
f(Z):_Z_Z+Z_2+3n§)(_1) Z _ZZ

2 5 >
== _ 4 _1n3_2—n—2 n
A MO R

For 1 < |z| <2,

and
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For 2 < |z| < oo,

331 3¢l
z+1 z1+(1/2) z4
and
1 U T i 1)n2n
2(z—|—2) 221+ (2/2) 22 = ’
Therefore,
5 2 3&(—1) 1.& (—1)2n
Z —_—— — p— —_— — —
us 2z 22 ZZ " 2zn;) "
_i (_1 n+1(3 on 2)
_n:3 Z
For 0 < |z+ 1] < 1, we let w = z+ 1 and then
z+4 B 5 2 3 1

221312 20w =2 Tw  2wr1)

For 0 < |w| < 1,

2(1—w) Enzbw ’
2 ( 2 )/ iz . iz( +1)
et prmnt W — n
(1 - W)2 l—w n=0 n=0
and
1 1
_ _1 n, n
2(w+1) 2,§)( y'w
Therefore
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0.

10.

Write the two Laurent series in powers of z that represent the function

1

fz)= (1 +Z2)

in certain domains and specify these domains.

Solution. Since f(z) is analytic at z # 0,44, it is analytic in 0 < |z| < 1 and 1 <
2] <o
For 0 < |z] < 1,

and for 1 < |z] < oo,

1 1 1
0=z =3 (rem)

(o)

= zl3 i:o(_l)nz—M — Z (_1)nz—2n—3

n=0

Let

22

M0=2750

Find the Laurent series of f(z) in each of the following domains:

(@ 1<zl <2
b) 1<|z—3|<2

Solution. First, we write f(z) as a sum of partial fractions:

2 Lo =2 L4 1
2-3z+2  (z-2)(z—1) = z—2 z-1
Inl<|z] <2,
22 2 11

L — S
2 —3z+2 1-z/2 z1-1/z
(o] 1 (o]
=1-2)y 27" —- ) "

n=0 =0

o) o)

:_1_221—nzn_ Z—n
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Inl<l|z—3]<2,

2 4

1

— =1+
2 —3z+42 (z

—-3)+1

2+&—3)

43 1+1/(z— ) ;< (z1 3)/2)

1+
- —3i _—éi -3
n=0 n=0
1 (o] (o]
§+4Z< ln—H Z n2—n 1 3)n
n=1 n=1
11. Let
2
Z
=2

Find the Laurent series of f(z) in each of the following domains:

@@ 1<lz]<2
(b) 0<|z—2| <1

Solution. First, we write f(z) as a sum of partial fractions:

2 Z+2 4 1
22 —z—2 (z=2)(z+1) 3(z—=2) 3(z+1)
Inl<|z] <2,
2 2 1 11
2—z-2 31—z/2 3z1—|—1/z

_1__22 nZn__Z n—n

1 oo
:___221 nzn+ Z n—n
3 n
In0<|z—-2|<1,
2 4 1 1
5 =1+ -
t—z-2 3(z—2) 33+(z—2)
0 3(z—2) 914+(z—2)/3
4
=14+——=Y (=1)"37"(z—=2)"
3(z—2) 9;;)( )'37z=2)
8

§+31—

4 - n —n— n
ﬁ‘f—Z(—l) +13 2(Z—2)

n=1
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12. Find the Laurent series of
1

2
e —1

in z up to z% and show the series converges in 0 < |z| < v/27.

e* — 1 has a zero at 0 of multiplicity one and hence f(z) has pole at 0 of order 1. So
the Laurent series of f(z) is given by

f(2) Z an?" =—+ao+a1z+a2z +asz +Zanz
n=—1 n>4

in 0 < |z| < r for some r > 0.
Since (¢ —1)f(z) = 1, we have

1= <a1 +apz+ a1+ @ +azzt + Z an1Z")
n>5

2 3 4 7"
1
( +2+6+24+120+Z( +1)>

Comparing the coefficients of 1, z, Z2, 72 and z* on both sides, we obtain

( a_1=1
ao+%:0
al—i-%o—i—%—o

ar g+ L+ =

ay+ 5+ L4 S0+ =0

Solving it, we have a_; = 1, ap = —1/2, a1 = 1/12, ap = 0 and a3 = —1/720.

Hence
1 1
f(Z)—E—z E—%—%Zanz
and
L _pey=1 1,2 +Z
= = — — a
e ACE A R D) 720 e

Note that f(z) is analytic in {z: e*— 1 # 0} = {z # 2nmi}. So it is analytic in
0 < |z| < 27. Therefore, f(z?) is analytic in 0 < |z%| < 27, i.e., 0 < |z| < v/27. So
the series converges in 0 < |z| < v/27. |
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4.2 Classification of singularities

1. For each of the following complex functions, do the following:

(@)

find all its singularities in C;

write the principal part of the function at each singularity;

for each singularity, determine whether it is a pole, a removable singularity, or
an essential singularity;

compute the residue of the function at each singularity.

f(z) = l

(cosz)?
Solution. f(z)is singular atcosz=0,i.e.,z=nn+n/2. Letw=z—nn—1/2.
Then

1 1 1

(c0sz)2  (cos(w+nm+m/2))2  (sinw)2’

Since sinw has a zero of multiplicity one at w = 0, f(z) has a pole of order 2
atz=nnw+ /2. So

1
(sinw)?

a_n a_q
=—+ + Z aw".
w w n>0

Since

oo (_l)nw2n+l

2 (o)
(sinw)? = (,,Zo W) = w? +r§bnw”

we have
1= a—_22+E+Zanw" wz—l—anW” .
w w n>0 n=4

Comparing the coefficients of 1 and w on both sides, we obtain a_, = 1 and
a1 = 0. So the principal part of f(z) atz=nm+ /2 is

1
(z—nmw—1/2)?

with residue 0. |
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(b) f(z) =(1—-2")exp (%)

Solution. Since & =Y 7"/n!,

- n 1 n—3
o0 1 o0 1 3 3-n

Therefore, f(z) has an essential singularity at z = 0 with principal part

L (=) 7

n=1

and residue

1 1 23
R = - —- = —.
Res [ =11~ 51—
m
sinz

(©) f(2) = om0

Solution. Since
sinz Z nZ2n+1
72010 — ;2010 2n+1)!

o0 (_1)nz2n 2009
B nZO (2n+1)!

1004 1)n 2n—2009 0 (_1)nZ2n72009
— + Y
Z (2n+1)! —T00s  (2n+1)!

f(z) has a pole of order 2009 at z = 0 with principal part
1004 (_ 1 )nZ2n—2009

n;) (2n+1)!

and with residue

sinz (—1)1004 1
Res = = .
=0 22010 (2.1004+1)! 2009!




4.2 Classification of singularities 87

eZ
d —
@ &) =12
Solution. Since 1 —z* = (1 —z)(1+2z), f(z) has poles of order 1 at 1 and —1.
Therefore,
et et e
Res = = ——
=11-22 (1-22)|_, 2
and
et et 1
R - -
SO1=2 T (=22 |, 2e

And the principal parts of f(z) atz=1and z = —1 are

e 1
— and
2(z—1) 2e(z+1)

respectively.

4

© f@)z(l—zanp<1)

Solution. The function has a singularity at O where

1 > 1

<

o 1
,;(n')z" ngg(n!)z”*Z (" +2 2)
1 hind 1 hnd 1
2
== —z+5+ -
2t Buroe
1 hind 1 1
_ 2 - — n
. ”%*E(m<mm0

So the principal part is
- ()
¥ (55
= \n (n+2)!
the function has an essential singularity at 0 and

I 1 5

Resf)=11-31"%
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1
(sinz)?

® flz) =

Solution. The function has singularities at kx for k € Z. At z = kr, we let
w = z— k7 and then

1 B 1 B oo (_l)nw2n+1 -1
(sinz)2  (sinw)? (;) (2n+1)! )

n

1 0o (_l)nWZn -1
:W<n;0 (2n—|—1)!>

So the principal part at k7 is

1
(z—km)?

the function has a pole of order 2 at k7 and

Res f(z) =0

7=km

B 1—cosz

(& fla)= 2

Solution. The function has a singularity at O where

l—cosz 1 > (—1)"Z2” 1 (_1)n+1Z2n
2 —Z_Z(I_Z‘ (2n)! >__2Z (2n)!

n=0 n=1
0 (_1)n+lz2n—2
N n; (2n)!

So the principal part is 0, the function has a removable singularity at 0 and

Rep/ta) =0
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eZ
72(z—1)2

Solution. The function has two singularities at 0 and 1. Atz =0,

(h) f(2) =

So the principal part at 0 is 1/z, the function has a pole of order 1 at 0 and
Resf(z) =1
7z=0

Atz=1,weletw=z—1 and then

e? el—i—w e M oo o
=12 (I+ww? w2 (gﬁ) (n;)(_l) v )
-5 <1+w+iw—7> (l—w+ i(—l)"w”)
w n=2 n:. n=2
:% <1+ianwn>

n=2

So the principal part at 1 is

e
(z—1)

the function has a pole of order 2 at 1 and
Res f(z) =0
z=1

(i) f(z) =tanz

Solution. The function has singularities at {cosz=0} ={z=kn+7x/2:k € Z.
Atz=kn+ /2, we let w =z —km — /2 and then

T /4 cosw
tanz = tan <w—|—k7r—|— 5) — tan (w—l— 5) - _
Since sinw has a zero of multiplicity 1 at w = 0, tanz has a pole of order 1 at

z=km+ /2. Therefore

sinw

=1

w=0

Res tanz = Res
z=kn+m/2 w=0

< COSW) Cosw

sinw (sinw)’

and the principal part of tanz at z = kw4 /2 is
1 1

w z—kn—m/2
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() f(z)=(1—2)sin (l)

<

Solution. The function has a singularity at O where

(1 (—1)
(1=2)sin <Z) =3 _Zz)nzo (2n+ 1))
re
! !

_ v (-1 B
o Z ((2n+1)_)22n+1 Z ((2n+1) )ZZn—l

n=0

ey = (-1
- _Z+r§) ((2n+ 1)!)Z2n+1 o Z (2n+ 1)!)Z2n—1

n=1
e e
- _Z+r;0((2n+1)!)Z2n+l _,;)((2n+3)!)22n+1
> " 1 1 o
A A ((2n+1)!+(2n+3)!)z "

So the principal part is

= 1 o
,;0(_1) ((2n+1)!+(2n+3)!)z o

Therefore, the function has an essential singularity at 0 and

17

1
Resf)=11+3= ¢

eZ

& f(z) = 2011
Solution. The function has a singularity at O where

e 1 iz"
201~ 2011 £ 1

oo Zn72011 2010 Zn72011 0o Zr172011
= Z = Z 4
n! n! n!
n=0 n=0 n=2011

Therefore, the principal part of f(z) at z=0is

2010 Zn72011

|
=0 n.

and f(z) has a pole of order 2011 and residue

1
Resf(2) = 20101

atz=0. |
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COSZ

O f)=5—3

<

Solution. The function has singularities at {72 —z> = 0} = {z =0,1}. At
7 =0, 72 — 7’ has a zero of multiplicity 2 and hence f(z) has a pole of order 2.

Suppose that the Laurent series of f(z) at z =0 is given by

COSZ a_ 2
23, +Zanz
n>0

<

Hence

(zz—z3)<—22 +Zanz>:cosz:1+i(_(—‘
n=1

n>0

Comparing the coefficients of 1 and z on both sides, we obtain that a_, =1
anda_; —a_»=0and hence a_; =a_ = 1. So the principal part of f(z) at

z=01s
1+1
2z

with residue

Res f(z) =
Atz =1, 72 — 7> has a zero of multiplicity 1 and hence f(z) has a pole of order
1. Hence
cosz cosz
Res = = —cos(1
12— (2-2) |, (1)

and the principal part of f(z) atz=11s

cos(1)
z—1°

4.3 Applications of residues
1. Calculate g
-z
— 4z,
/c z(4—2) <
where C is the circle of radius 7, centre 0, negatively oriented.

Solution. Observe that

8—z 8-2z+4z 2 1 2 1
f(z>:z(4—z): 7(4—72) :E+(4—Z):E_(Z_4)
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The function f has two singularities on C, z = 0 and z = 4. Both are inside C. At
z=4, —1/(z—4) is analytic and then

Res f(z) =2
z=0
Similarly, since 2/z is analytic at z = 4,
Res f(z) = —1
z=4

From Cauchy’s residue theorem, and considering that C is negatively oriented, we
have that

/cz(i;—zz)dz = —2mi (l}_egf(z)Jrl}_eff(z))
= 2mi(2—1)=—2mi

. Compute the integral

/” do
0 2—cosO’
Solution. Since 1/(2—cos8) is even,

/” e 1/7r do
0 2—cosO® 2J)_z2—cos6’
Letz=¢'®. Then cos8 = (z+z7!)/2 and d6 = —iz~'dz. Hence
/” e 1/” do
0 2—cos@® 2J)_12—cosBO
B —idz
f=122(2— (z+271)/2)

/ dz

=] _—
=122 —4z+1
The function

1 1
2—4z+1  (z—2-3)(z—2+/3)

has a singularity in |z| < l atz =2 — /3. Therefore,
dz 1
——— =27mi Res ——
/|z—l 22 —4z+1 =322 —4z+1
1 i

=2 ——— =——.
(P—4z4+1)|.,_ 5 V3

Therefore,

[
0 2—cos® /3
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3. Let a,b € R such that ®> > b?. Calculate the integral
/” do
0 a+bcosO

Answer:
a2 _ b2

4. Evaluate the contour integral of the following functions around the circle |z| = 2011
oriented counterclockwise:

1 .
sinz’
1

ez — g2’

(a)

(b)

Solution. (a) f(z) =1/sinzis analytic in {z # nm : n € Z}. It has a pole of order

one at n7 since (sinz)’|,—,z = cos(nm) = (—1)" #0. So

1 1
Res — = =(-1)".
=nmsinzg  cos(nm)

Therefore,

dz . 1
/ — =27i Z Res —
|z|=2011 SINZ |M|<20”1—n7r sinzg

=2mi Y. (—1)"=2m7i.

|n| <640

(b) f(z) = 1/(e* —¢%) is analytic in
(¥ - 40} ={# 1} ={z#2nmi:nc 7}.

Since (€% — €%)'|,—onzi = 1 # 0, f(z) has a pole of order one at 2n7i. So

1 1
Res 3 =5 =1.
=2nmi eXX — % Qe — et

z=2nmi

Therefore,
dz ) 1
/ = 27 Z Res S
lz|=2011 €= —e€ 2nmi[<2011 32w €T —¢€

=27 Y 1=2m ) 1=1282mi
|2nmi| <2011 |n|<320
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5. Let
f(2)=(z—a1)(z—a2)...(z— an)

be a complex polynomial with n > 2 distinct roots ay,as,...,a,
(a) Prove that

dz ! 1
— =27y ——
/z—R f(z) kz’] [1j2x(ax —aj)
for R > |ay| (k=1,2,....n).
(b) Use (a) and Cauchy Integral Theorem to prove that
n
1
R ——

=1 jlax —aj)

for all distinct complex numbers ay,as, ..., a,.

Proof. By Residue theorem,

[i = R

At each ay, 1/f(z) has a pole of order one and
1

1 (z—aj)) 1

Res —— = Res (Hﬁék(z J)) = .
=a f(z2) = Z—a [T (ax —ay)

Therefore,

dz L 1
Jie 70 = L o=y

(
Since deg(f(z)) =n> 2,

dz .
/|z|R% =0

by Problem 21 in Section 3.2. Therefore,

Hﬁék ax — a])
|
6. Use Cauchy Integral Theorem or Residue Theorem to show that

1 dz 1Y (=)
_/ 24 :_+2Z(2)2
2mi Joy z°sinz - 6 = n°m

and conclude that

& (=1 11 1
Ty 7 =l-mtym—gpte

12 n 22 34 4
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Solution. The function f(z) = 1/(z?sinz) has singularities at z = nx for n € Z. So

1
/ 5 Z Res 3
2wi Jey 2 sing A~ y=nm zesing

n=

by Residue Theorem.
At z = nx for a nonzero integer n,

2| #0 and (sinz)/| #0.

nmw nmw

Therefore, 1/(z%sinz) has a pole of order 1 at n7 for n # 0. It follows that

1 1
Res = 57—
=nmz2sinz  z%(sinz)

_ 1 _ =
- n?mcos(nm)  nim?

7=nmw

for n # 0.
At z =0, z?sinz has a zero multiplicity 3 and hence 1/(z?sinz) has a pole of order
3. Suppose that the Laurent series of f(z) at z = 0 is given by

a-3
3 + z2 -+ Zanz
n>0

Then

7 . a_j a_z a_
Z smz( 3 + z2 +Zanz

n>0
1——+anz a_3+a_zz+a_1z2+2anz" =1.
n>3 n>3
Comparing the coefficients of 1, z and z> on both sides, we have

a_s3=1
a_p = 0
a-3

@17 =0

Solving the equation, we obtaina_; =1/6,a_» =0anda_3 = 1. So

1
Res — = —.
=0 z2sinz 6

Therefore,

Z Res

1 /
27i Joy 72 sing N nm 72 sinz

n=

1 n=-—1 (_1)n n=N (_1)n
_5+n:7N n?m? iy '
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We observe that

=" _ =D™

22  (—n)x2

and hence we obtain

1 dz 1 & (=)
— =_ 42 .
2mi /CN 2sing 6 * Z n?m?

By Problem 14 in section 3.2, we have

. 1 dz
lim —/ =0
N—eo 2700 Jcy 72sinz

Consequently,
Ly &
Z42 =
6" n;l n?n?
That is,
2 o n o n+1
n (=1 (=D
1 )y 2 )y 2
n=1 n=1
4.3.1 Improper integrals
1. Compute the integral / . x%dx

Solution. since ¢”* = cosx +isinx,

*°  cosx oo e
——dx=R / —————d.
N R b e( o X+ X241 x)

Actually, we have

o COSX /°° e 4
—dX = —axX
e X2 +1 X X241

in this case since sinx/(x* +x? + 1) is odd.

Consider the contour integral of e%/(z* +z*> + 1) along the path Lg = [—R,R] and
Cr = {|z| = R,Im(z) > 0}, oriented counterclockwise. By CIT or residue theorem,

we have

eiz eiz
Y S
/LRZ4+Z2+1 P +72+1

lZ

=27 R
lzzifz 4241
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where 21,2, ..., 2, are the singularities of e’/ (z* + 7% + 1) inside the region {|z| <
R,Im(z) > 0}.

We find the singularities of %/ (z* +z? 4 1) by solving z* +z> +1 = 0: we observe
that (z2 —1)(z* +2z%2+1) = z° — 1. So the function has four singularities =¢”/3 and
+¢27/3_ Two of them ¢*/3 and ¢*™/3 lie above the real axis. Therefore,

174 elZ
—dz+/ I T
/LRZ4+22+1 G+ +1
iz iz
=2mi| Res ——>——+ Res ————— ).
(Z_em/3 AH24+1 pupn 241 )

Since all zeros of z* + 72 4 1 have multiplicity one, all poles of

eiz/(z4 _'_22 + 1)
have order one. Therefore,
Ree € e’ _exp((—V3+i)/2)
e 24+ (4241 | s V3i-3
and
Res et e exp((—v3—1i)/2)
e = p— .
e+ (B2 | s V3i+3
Hence

S

eiz eiz 1 1
i | e (e (1))
/LRZ4+Z2+1 z A+ +1 . 3( 2 2

For z lying on Cg, y = Im(z) > 0 and hence |¢”?| = ¢ < 1. Hence

<
A2+ T R -R -1

et ' 1

and it follows that

/ et gel < TR
A2 I SRR
Since
TR

lim ——— =0

e R*—R?—1 ’
we conclude that

iz
im [ —S 4z =0

Z_
Roo Jog 22 +22+1
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Therefore,

/°° cosx /°° e J
————dx= ————dx
e X X241 e X X241
eiz
= lim ———dz
R—oo Jp 24+ 22+1

() ()

2. Compute the integral
° sinx
—dx.
/_oo X2 4+2x+42 o

Solution. since e” = cosx 4+ isinx,

©°  sinx o0 e
Y =1 R
/_oox2+2x2—l—2 * m</_oox2—|—2x2—|—2 x)

Consider the contour integral of e*/(z> +2z> +2) along the path Lg = [~R, R] and
Cr = {|z| = R,Im(z) > 0}, oriented counterclockwise.

Since €/ (z%> 4+ 2z +2) has two isolated singularities at —1 & with —1 + i lying
inside the curve Lg UCg, we have

154 elZ
Y
/LRZ2+222+2 Cr 22427242
eiz
=2mi Res ——m——
L2242

e’
(Z2+2Z+2)/ z=—1+i
_ 2miexp(—i—1) =«

5; = ;(cos(l)—isin(l))

=27

by Cauchy Integral Theorem or residue theorem.
For z lying on Cg, y = Im(z) > 0 and hence |¢’| = ¢ < 1. Hence
e 1
<
12+2z2+2‘ T RZ-2R2-2

and it follows that

< TR
~ R2-2R2-2

o
fraa
Since

TR

lm — % _
RWRE_2RE—2
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we conclude that

eiz
li ————=dz=0.
R o2 +222+2°°

Therefore,

o sinx e e
—dx=1 —-—d
/_oox2—|—2x2~|—2 * m(/_mx2+2x2+2 x>

eiz
=1 li —d
m (Rglgo/LR 224272242 Z)

T
= ——sin(1).
esm()
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