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Abstract. The temporal progressive increase of interferon tau (IFNT) secretion from the bovine trophoblast is a major
embryonic signal of establishing pregnancy. Here, we cultured and isolated bovine trophoblast cells (BTs) from IVM/IVF
oocytes and in vitro produced blastocysts, used them, for the first time, as donor cells for nuclear transfer and compared
them with adult fibroblasts (AFs) as donor cells. BTs were reprogrammed in enucleated oocytes to blastocysts with similar
efficiency to AFs (14.5% and 15.6% respectively, P<0.05). The levels of IFNt, CDX2 and OCT4 expression in [VF-, BT-
and AF-derived blastocysts were analyzed using reverse transcription polymerase chain reaction and reverse transcription
quantitative polymerase chain reaction (RT-PCR and RT-qPCR). IVF-produced embryos were used as reference to analyze the
linear progressive expression of IFNt through mid, expanded and hatching blastocysts. RT-PCR and RT-qPCR studies showed
that IFNT expression was higher in BT-derived blastocysts than IVF- and AF-derived blastocysts. Both IVF- and BT-derived
blastocysts showed a progressive increase in IFNt expression as blastocyst development advanced when it compared with
AF-derived blastocysts. OCT4 was inversely related with IFNt expression, while CDX2 was found to be directly related with
IFNt temporal expression. Persistence of high expression of IFNt and CDX2 was found to be higher in BT-derived embryos
than in IVF- or AF-derived embryos. In conclusion, using BTs expressing IFNt as donor cells for bovine NT could be a useful

tool for understanding the IFNt genetics and epigenetics.
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ince the first cloned lamb was born, nuclear transfer (NT) has

been challenging in several species and has produced many
cloned offspring [1-3]. To produce cloned offspring, fetal fibroblasts
have been chosen as a preferential donor cell line for NT so far
because they have high proliferative potentials [4-7]. In cattle, fetal
and adult fibroblasts have been dominantly used for NT to produce
cloned calves. Additionally, several types of cells, like granulosa,
cumulus, oviduct epithelial cells, skin, tongue and other cells, have
been used for NT [8, 9].

After fertilization of an egg with a sperm, the one-cell stage embryo
grow up through several mitosis and reaches the preimplantation
stage, becoming a blastocyst, which consists of an inner cell mass
(ICM) that is capable of differentiation into all embryo organs and
trophoblasts, which are the first differentiated cells from the embryo,
and contributes formation of the placenta and fetal membranes but
does not participate the formation of the fetus proper [7]. Some
reports have demonstrated trophoblast isolation and its function in
vitro in cattle [10—12]. In mice, living pups were born by nuclear
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transfer of trophectoderm cells from the expanded blastocysts into
enucleated oocytes [13] as a trial to show the similarity in totipotency
of both ICM and trophoblast cells from a single blastocyst. However,
bovine trophoblast cell lines have not been employed in NT so far.

Over the past two decades, there has been much interest in
interferon tau (IFNt), which is produced by the trophectoderm during
a defined period of peri-attachment in ruminant embryos. IFNt is
a type I IFN under a unique transcriptional control that limits its
expression to ruminant trophoblasts prior to implantation [1, 14-16].
A major role of this cytokine is to mute the pulsatile release of
prostaglandin F,, from the maternal uterine endometrium, thereby,
blocking luteolysis [17, 18].

The unique pattern of IFNt expression is regulated by promoter/
enhancer regions that are distinct from those of other type I IFN
genes [19, 20]. One key component of IFNt expression is caudal-type
homeobox 2 (CDX2), which stimulates IFNt promoter activity in
the presence of Ets-2 [21, 22]. In addition, the POU homeodomain
protein (Oct-4), which is best known as a marker of pluripotency
[23], blunts the ETS2-induced IFNt promoter activity [14] in addition
to inhibiting other factors during early pregnancy like CDX2 [24].
Recently, we showed the temporal interaction between OCT4 and
CDX2 and their effects on IFNt expression [25]. So this study, as a
continuation of our previous work, was undertaken to (1) elucidate
if BT, as an interferon tau secreting cell, can be reprogrammed in
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bovine enucleated oocyte; (2) determine the relative abundance of
IFNt expression in the resulting cloned preimplantation embryos; and
(3) study the temporal gene interaction affecting IFNt expression,
especially the OCT4 and CDX2 genes.

Materials and Methods

Oocyte collection and in vitro maturation (IVM)

Cow ovaries were collected from a local abattoir, placed in saline
at 35 C and transported to the laboratory within 2 h. Cumulus-oocyte
complexes (COCs) from follicles 2—8 mm in diameter were aspirated
using an 18-gauge needle attached to a 10 ml disposal syringe. The
COCs with evenly-granulated cytoplasm that were enclosed by more
than three layers of compact cumulus cells were selected, washed
three times in HEPES-buffered tissue culture medium 199 (TCM-
199, Invitrogen, Carlsbad, CA, USA) and supplemented with 10%
FBS, 2 mM NaHCOj; (Sigma—Aldrich, St. Louis, MO, USA) and
1% penicillin—streptomycin (v/v). For IVM, COCs were cultured in
four-well dishes (30—40 oocytes per well; Falcon, Becton, Dickinson
U.K., Plymouth, UK) for 22 h in 450 ul TCM-199 supplemented
with 10% FBS, 0.005 AU/ml FSH (Antrin, Teikoku, Tokyo, Japan)
and 1 pg/ml 17B-estradiol (Sigma—Aldrich) at 39 C in a humidified
atmosphere of 5% CO,.

Sperm preparation, in vitro fertilization (IVF) and in vitro
culture of embryos (IVC)

Motile spermatozoa were purified and selected using a Percoll
gradient [26]. Briefly, spermatozoa were selected from thawed semen
straws by centrifugation on a Percoll discontinuous gradient (45-90%)
for 15 min at 1500 rpm. A 45% Percoll solution was prepared with
1 ml of 90% Percoll and 1 ml of TALP medium. The sperm pellet
was washed two times with TALP medium by centrifugation at 1500
rpm for 5 min. The active motile spermatozoa from the pellet were
used for insemination of matured oocyte (at 22 h of IVM). Oocytes
were inseminated (day 0) with 1-2x10° spermatozoa/ml for 18 h
in 30 pl microdrops of IVF-TALP medium overlaid with mineral
oil at 39 C in a humidified atmosphere of 5% CO,. Presumptive
zygotes were denuded and cultured in a two-step defined culture
medium as described previously [27] and overlaid with mineral oil
(Sigma—Aldrich).

Differential cell staining of blastocysts

The cell numbers of blastomeres, inner cell mass (ICM) and
trophectoderm (TE) cells in blastocysts were counted after chemi-
cally defined staining as described by Thouas et al.[28]. Blastocysts
were incubated in 500 pl of BSA-free, Hepes-buffered TCM-199
supplemented with 1% (v/v) Triton X-100 and 100 pg/ml propidium
iodide for 30 sec. When the TE color visibly changed to red and
shrank slightly during treatment, blastocysts were incubated at 4 C
for overnight in 500 pl fixative solution consisting of 25 pg/ml
bisbenzamide in absolute ethanol. The blastocysts were then treated
in 99% (v/v) glycerol and mounted onto a glass microscope slide in
a droplet of glycerol solution, and cell numbers of each parameter
were counted using epifluorescence microscopy. The ICM cell nuclei
labeled with bisbenzimide appeared blue, and TE labeled with both
bisbenzimide and propidium iodide appeared pink.

Isolation and culture of trophoblasts

Primary cultures of bovine trophoblasts were done as described
previously [12]. Briefly, hatched blastocysts produced by IVF
were plated into 4-well tissue culture dishes on day 10 to 11 of
their development (Nunc, Thermo Scientific, Roskilde, Denmark).
The dishes were coated with 0.1% gelatin and containing feeder
layers of mouse embryonic fibroblasts treated with mitomycin C
(Sigma-Aldrich). Blastocysts were cultured in 1 ml of DMEM-F12
(mixture of DMEM-F12 supplemented with 10% FBS, 0.1 mM,
B-mercaptoethanol, 1% nonessential amino acids [Invitrogen],
2 mM GlutaMax, and 1% Penicillin/Steptomycin [Invitrogen]).
Fresh medium was added to the primary cultures every 3—4 days.
Secondary passage of the trophoblast cell cultures was performed
by physical dissociation. Secondary and subsequent cultures were
done by removing the monolayer of cells from the tissue culture plate
surface followed by mechanical dissociation and chopping of the
primary colonies and subculture of the small chops on new feeder
plates. The cells were pelleted by centrifugation (1500 rpm for 2 min)
in a 1.5 ml round-bottom centrifuge tube. The resulting relatively
small clumps of cells were resuspended in 10% DMEM-F12 and
plated onto a feeder layer, typically at a 1:4-6 split ratio. Incubation
performed at 39 C in a humidified atmosphere of 5% CO, air.

Preparation of donor cells and nuclear transfer

For donor cells, BT, the cell sheets were carefully removed by
pipetting, then transferred to washing medium (DMEM-F12 with
10% FBS) and washed 2 times. Trypsin-EDTA was added for 6-8
min with interval pipetting every 2 min. Cells were centrifuged (1500
rpm for 2 min) and washed with PBS 2 times and then suspended
in PBS containing 0.5% FBS (v/v). For adult fibroblasts, confluent
cell cultures were washed 2 times with PBS. Trypsin-EDTA was
added for 2-3 min to detach the cells. The cells were centrifuged
and washed with PBS 2 times and then suspended in PBS containing
0.5% FBS (v/v). A single trophoblast or adult fibroblast was deposited
into the perivitelline space of enucleated oocytes. The couplets
were subsequently placed in a fusion medium comprising 0.26 M
mannitol, 0.1 mM MgSQOy,, 0.5 mM HEPES and 0.05% BSA (Sigma)
and transferred into a cell fusion chamber with a stainless steel wire
electrodes (BTX 453, 3.2 mm gap; BTX, San Diego, CA, USA) after
equilibration for 3 min. Fusion was induced by two DC pulses of 1.75
to 1.85 kV/cm for 15 psec using a BTX Electro Cell Manipulator
200. Fusion of the donor cell and ooplast was observed 1 h after
electric stimulation under a stereomicroscope. Only fused embryos
were selected and cultured for 4 h in TCM 199 supplemented with
10% FBS. Reconstructed embryos were activated for 4 minutes with
5mM ionomycin (Sigma-Aldrich) followed by 4 h of culture in 1.9
mM 6-DMAP (Sigma-Aldrich) microdrops. Cloned embryos were
cultured in 25 pl microdrops of a two-step defined culture medium
overlaid with mineral oil (Sigma-Aldrich) for 7 to 8 days at 39 C
in an atmosphere of 5% O,, 5% CO, and 90% N,.

Semi-quantitative and relative quantitative PCR

Three embryos from each stage, mid, expanded and hatching
blastocysts (C6, C7 and C7H respectively according to the IETS
embryo codes), were subjected to RT-PCR and qPCR with three
repetitions per sample. A single embryo from each stage was washed
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Table 1. Primers used for RT-PCR* and real-time qRT-PCR

. R s Annealing Fragment size =~ GenBank accession
Gene Primer sequences (5’----3") temperature (C) (bp) number
F: TCCATGAGATGCTCCAGCAGT 60 103
R: TGTTGGAGCCCAGTGCAGA
IFNt X65539
F*: GACGATCTCTGGGTTGTTAC 55 565
R*: GTG ATGTGGCATCTTAGTCA
F: GGTTCTCTTTGGAAAGGTGTTC
OCT# R: ACACTCGGACCACGTCTTTC 60 314 AF022987
CDX? F: GCCACCATGTACGTGAGCTAC 60 140 DO126146
R: ACATGGTATCCGCCGTAGTC Q
KRTS F: CACCAGTTCCAAGCCTGTGG 55 176 NM 001033610.1
R: TCAGGTCTCCTGTGCAGATGC - :
F: GGCGTGAACCACGAGAAGTA
GAPDH 60 119 NM_001034034.1

R: CCCTCCACGATGCCAAAGT

with PBS three times, transferred into 5 pl of diethyl pyrocarbonate
(DEPC)-treated water and stored at —80 C or used freshly for total
RNA extraction using an RNeasy total extraction kit (Qiagen, Valencia,
CA, USA) according to the manufacturer instructions. Reverse
transcription was carried out at 50 C for 50 min. Individual RT
reactions were performed using a random hexamer and SuperScript™
IIT Reverse Transcriptase (Invitrogen) in a 20 ul reaction. One to
two microliters cDNA were subjected to reverse transcription-
polymerase chain reaction (RT-PCR) using a Maxime PCR PreMix
kit (i-starTaq) (Intron, Seoul, Republic of Korea). Primer sequences,
annealing temperatures and approximate sizes of the amplified
fragments are listed in Table 1. PCR amplification was carried out
with one cycle of denaturation at 95 C for 5 min and subsequent
cycles of denaturation at 95 C, annealing for 30 sec, extension at 72
C for 45 sec and final extension at 72 C for 5 min. Ten pl of PCR
products were fractionated on 1% agarose gel (Intron) and stained
with RedSafe™ (Intron). The expression level for each gene was
determined densiometrically with the Image J software (Version
1.40g, NIH, Besthesda, MD, USA). Relative expression levels of
each gene at specific stages of embryo development were represented
as a ratio to GAPDH gene expression. Relative quantitative PCR
(RT-gPCR) was done according to the Takara Bio guidelines. A 22
ul PCR reaction mix was made by adding 2 ul cDNA, 1 pl forward
primer, 1 pl reverse primer, 8 il SYBR Premix Ex Taq, 0.4 ul ROX
Reference (Takara Bio, Shiga, Japan) and 9.6 pul of nuclease-free
water (Ambion, Austin, TX, USA). The reaction was done using a
7300 Real-Time PCR System (Applied Biosystems, Foster City, CA,
USA) according to the company instructions. The thermal profile
for real-time PCR was 95 C for 10 min, followed by 40 cycles of
95 C for 10 sec, 60 C for 20 sec and 72 C for 40 sec.

Gene expression in blastocysts derived from different donor
cells

Interferon tau (IFNT), CDX2 and OCT4 expression were studied
by reverse transcription PCR of blastocysts derived from NT using
bovine trophoblasts (BT) and adult fibroblasts (AF) or from in vitro
fertilization (IVF). Relative quantitative PCR for these genes of
different embryonic stages, mid (C6), expanded (C7) and hatching

(C7H) blastocysts, were evaluated using the pixel intensity of the
agarose gel bands and using imaging analysis program ImagelJ. The
relative expression of each specific gene was calculated and presented
as a ratio to the same gene in the same stage of [VF-produced
embryos as arbitatory units.

Relative progression of gene expression in embryos derived
from different donor cells

According to our recent results [25], the stages of blastocyst
expansion till blastocyst hatching showed variable behaviors in the
temporal gene expression patterns, especially for the [FNt, CDX2
and OCT4 genes. Here, we studied the relative temporal expression
of these genes in mid, expanded and hatching blastocysts in relation
to their expression in the morula stage within the same group as
an internal reference in order to determine the relative progressive
expression of each gene separately.

Statistical analysis

In each experimental group, presumptive zygotes were randomly
distributed. All data were subjected to one-way ANOVA followed
by Tukey’s test to determine differences among the experimental
groups using GraphPad (Version 4.0, Graphpad software, San Diego,
CA, USA). Statistical significance was determined when a P value
was less than 0.05.

Results

Isolation and culture of trophoblast cells

Primary culture of trophoblasts was done by placing of hatching or
hatched blastocysts on a feeder layer. Outgrowths from the attached
blastocysts were seen and left to expand for 3 weeks until reaching
about 1 cm in diameter. Trophoblasts were morphologically large
cuboidal cells (Fig. 1). Secondary and subsequent cultures were done
by mechanical dissociation and chopping of the primary colonies and
subculturing of the small chops on new feeder plates every 7 days
after reaching a diameter of about 0.5 cm. After several passages, cells
maintained the same morphology and strongly expressed mRNA of
trophoblast markers, IFNt, keratin (KRTS8) and CDX2 (Figs. 1 and 2).
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Isolation of trophoblasts from in vitro fertilized embryos. The
embryo, a hatched blastocyst, was put on a feeder layer (Day 0)
(x40). After 4 (A) (x40) and 7 days (B), the embryo was attached
and exhibited trophoblast outgrowth. Primary trophoblast cells,
which are large cuboidal cells on the feeder cells (C) (x100), were
stable after serial subculture (D) (x100).

Trophoblast reprogramming and early embryo development

A trophoblast cell was injected into enucleated oocytes, and the
oocytes and trophoblast cells were then fused, activated and cultured
in a two-step defined culture medium. Fusion of BTs was lower than
in AFs (71.3% vs. 93.1%, respectively), while there were no difference
in cleavage, morula, blastocysts formation rates and ICM/TE ratio
(71.3%, 30.6%, 14.5% and 28.92 + 5.1%, respectively) between
the two types of donor cell (Table 2). For more confirmation, we
injected mouse embryonic fibroblasts as a negative control donor
cell (the feeder cells of BT-1 in culture), and no reprogramming
occurred (morula and blastocyst compaction were both 0%, n=60
oocytes), which provide that the reprogramming was solely occurred
from the BT donor cells. Moreover, we used transgenic BTs derived
from green fluorescence protein (GFP) embryos as donor cells for
nuclear transfer, and the resultant embryos expressed GFP (Suppl
eFig. 1: available at www.jstage.jst.go.jp/browse/jrd).

Relative gene expression in blastocysts derived from different
donor cells

IFNt, CDX2 and OCT4 expressions in individual developing
blastocyst (mid, expanded and hatching or C6, C7 and C7H, re-
spectively, according to the IETS embryo codes) were compared
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IFNT (565bp)

CDX2 (140bp)

KRT8 (176bp)

GAPDH (119bp)

Fig.2. Gene expression screening in bovine trophoblasts (BT)

and adult fibroblast cell lines (AF). Isolated trophoblasts
cells strongly expressed IFNt, KRT8 and CDX2, but
adult fibroblasts (AF) did not. NC: negative control
cDNA template.

among the different donor cell types (Fig. 3). RT-PCR showed that
the IFNt expression was increased in BTs than in AFs when the
relative expressions of the same stages of [VF-produced blastocysts,
stage C7 and C7H but not C6, were compared (Fig. 3). Similarly,
in BT-derived blastocyts, CDX2 showed an increase in expression
when compared with AF produced hatching blastocysts. On the
other hand, OCT4 showed a decrement in expression in BT-derived
blastocysts compared with AF-derived blastocysts in both hatching
and hatched stages (Fig. 3).

Temporal progression of gene expression

Figure 4 illustrates the RT-qPCR comparison of IFNt, CDX2 and
OCTH4 relative to the progression of the developmental stages of BT-,
AF- and IVF-produced blastocysts in relation to their expression in
the morula stage as an internal reference of the same group. IFNt
progressively increased along with blastocyst development, i.e.,
from the mid-blastocyst stage until hatching in both BT- and IVF-
produced blastocysts; however, it showed a decrease in expression
by advancement of blastocyst growth in AF-produced blastocysts.
On the other hand, OCT4 expression progressively decreased along

Table 2. Development of embryos reconstructed by using an adult fibroblast or trophoblast as a donor cell

Type of donor cell Total oocytes Fused oocytes Cleaved embryos Morula Blastocyst Total blastocyst cell count
(%) (%) (%) (%) on 7"day (ICM/TE)
Adult fibrobl 90 83 63 24 13 74.02+5.1
ultfibroblast (93.1)* (75.9) (28.9) (15.6) (31.27 £ 4.2%)
62 49 19 9 76.71 £4.6
Trophoblast 87 (71.3) (79.0) (30.6) (14.5) (28.92 +5.1%)

* The value is significant (P<0.05).
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with blastocyst development in both BT- and IVF-produced blasto-
cysts; however, it tended to be stable or slightly increased (but not
significant) in conjunction with blastocyst hatching in AF-derived
blastocyts. CDX2 showed a similar expression pattern of IFNt in
BT- and AF-derived blastocysts (i.e., progressive increase), while it
did not show any significant change with the advancement of growth
in IVF-produced blastocysts.

Discussion

Many cloned offspring have been produced using several types of
donor cells including fibroblasts to date [ 1, 3, 29]. Most embryonic or
somatic cells are reprogrammed in enucleated oocytes and develop
into preimplantation embryos with different efficiencies. Although
embryonic cells, particularly, ICM cells, which are pluripotent, have
been well applied to NT for producing cloned offspring in mice,
trophoblast cells have not been given much attention. In ruminants,
trophoblasts cells at the implantation stage strongly expressed IFNr,
a type I IFN that is considered to be an important signal for anti-
luteolysis in early pregnancy [30]. Here, we proved the hypothesis
that trophoblasts cells expressing IFNt would be reprogrammed in
enucleated oocytes and develop into cloned blastocysts. In addition,
IFNTt expression increased along with development from early to
hatching blastocysts.

For this study, we isolated trophoblast cells from in vitro fertilized
embryos. Hatched blastocysts were attached to a mouse feeder layer,
and BT cells with a cuboidal morphology [12] were maintained
for further culture (Fig. 1). The BT cell line had high proliferative
capability, and outgrowth into visible colonies occurred within 5 to 7
days after subculture (Fig. 1). IFNt was well expressed in these cells
but not in adult fibroblasts (Fig. 2). In the current study, the blastocysts
derived from AFs or BTs showed no difference in developmental
competence parameters, including cleavage, blastocyst formation
and total and differential blastocyst cell counts, while they did show
a significant difference in membrane fusion that might have been
due to the large cell size of the BTs compared with the AFs [31, 32].

Hernandez-Ledezma et al. [15] suggested that the best way to study
IFNt expression as an indicator of embryo quality is to examine the
temporal expression rather than the absolute expression at a particular
stage because the latter is known to vary widely. Therefore, the
progressive increase in IFNt expression from IVF- or BT-derived
blastocysts indicates the similarity in behavior of IFNt transcripts
between the two groups, while its level was found to be decreased
as growth of blastocysts produced with AFs progressed, reflects the
blastocyst quality.

OCT4 was found to be inversely affected the IFNt expression
in all experimental groups, confirming our previous results that
OCT4 is the major dominant gene affecting IFNt expression. CDX2
expression was found to be directly related to IFNt expression
along with the embryo development until the hatching stage in both
BT- and AF-derived blastocysts suggesting that CDX2 is a potent
regulator of IFNt expression [22, 33, 34] while it showed no change
in IVF-produced blastocysts.

The significant increase in IFNt expression in BT-derived blas-
tocysts compared with IVF-produced blastocysts might be because
of the increased expression of CDX2 and the decrease in OCT4. We

speculate that the increase in IFNt might be the result of a retained
epigenetic status of the donor trophoblast (high expression of [FNt
and CDX2) cell because it was found that the epigenetic state of the
donor nucleus was retained in cloned embryos and that it affected
the reprogramming and development of the embryos [35, 36]. In
addition, reprogramming by NT keeps Oct-4 and Nanog stably
silenced by methylation [35, 36], which is another factor increasing
IFNt expression. Further investigations are required in this regard.

This is the first report to show successful reprogramming of bovine
trophoblast cells expressing IFNt by NT into preimplantation embryos
and that the embryos expressed a progressive increase in [FNt along
with development from early to hatching blastocysts. Also, it showed
the persistence of high expression of IFNt and CDX2 in embryos
derived from a cell in which these genes are highly expressed. Finally,
use of BT cells in NT will be one resource for further understanding
of the interaction between OCT4 and CDX2 genes in the regulation
of IFNt expression and epigenetic regulation of this gene.
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