
Concepts of Programming Languages
Lecture 20 - Event-Driven Programming

Patrick Donnelly

Montana State University

Spring 2014

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 1 / 37

Administrivia

Assignments:

Programming #4 : due 04.28

Reading:

Chapter 14

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 2 / 37

Of all men’s miseries the bitterest is this, to know so much
and to have control over nothing.

Herodotus (484-432 BC)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 3 / 37

Event-Driven Programming

A conventional model of computation has the program prescribe the
exact order of input.

Programs terminate once the input is exhausted.

Event-driven programs do not control the sequence in which input
events occur.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 4 / 37

Event Handling

Definition
An event is a notification that something specific has occurred, such
as a mouse click on a graphical button.

Definition
The event handler is a segment of code that is executed in response
to an event.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 5 / 37

Examples

GUI applications: Model-View-Controller design

Embedded applications:
cell phones
car engines
airplanes

Computation as interaction [Stein, 1998]:

Computation is a community of persistent entities coupled
together by their ongoing interactive behavior . . .
Beginning and end, when present, are special cases that can
often be ignored.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 6 / 37

Imperative and Event-Driven Paradigms Contrasted

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 7 / 37

Event Sources

Input to an event-driven program comes from autonomous event
sources.

Events occur asynchronously.

Example:
human,
robot sensors,
engine sensors

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 8 / 37

Event Properties

1 An event-driven program has no perceived stopping point.

2 The traditional read-eval-print loop does not explicitly appear.

3 An application processes an input and exits.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 9 / 37

Model-View-Controller (MVC)
Model: the object being implemented. Ex: game, calculator.

Controller: input mechanisms. Ex: buttons, menus, combo boxes.

View: output.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 10 / 37

Ex: Tic-Tac-Toe Model

Whose turn is it?

State of the board.

Has someone won?

Are there no empty squares?

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 11 / 37

Java GUI Application

Definition
A GUI application is a program that runs in its own window and
communicates with users using buttons, menus, mouse clicks, etc.

A GUI application often has a paint method, which is invoked
whenever the application needs to repaint itself.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 12 / 37

Java Swing GUI Components

Text box is an object of class JTextField

Radio button is an object of class JRadioButton

Applet’s display is a frame, a multilayered structure

Content pane is one layer, where applets put output

GUI components can be placed in a frame

Layout manager objects are used to control the placement of
components

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 13 / 37

The Java Event Model

Definition
User interactions with GUI components create events that can be
caught by event handlers, called event listeners.

An event generator tells a listener of an event by sending a message

An interface is used to make event-handling methods conform to a
standard protocol

A class that implements a listener must implement an interface for the
listener

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 14 / 37

Events in Java

Subclasses of AWTEvent

Event sources in Swing are subclasses of JComponent

Program must listen for events

Example
for a JButton b:

b.addActionListener(listener)

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 15 / 37

Java Class AWTEvent and Its Subclasses

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 16 / 37

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 17 / 37

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 18 / 37

The Java Event Model

One class of events is ItemEvent, which is associated with the event
of clicking a checkbox, a radio button, or a list item

The ItemListener interface prescribes a method,
itemStateChanged, which is a handler for ItemEvent events

The listener is created with addItemListener

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 19 / 37

Components and their Event Handlers

Widget Listener Interface
JButton ActionListener actionPerformed(ActionEvent e)

JComboBox ActionListener actionPerformed(ActionEvent e)

JLabel MouseListener mouseClicked(MouseEvent e)
mouseEntered(MouseEvent e)
mouseExited(MouseEvent e)
mousePressed(MouseEvent e)
mouseReleased(MouseEvent e)

MouseMotionListener mouseDragged(MouseEvent e)
mouseMoved(MouseEvent e)

JTextArea ActionListener actionPerformed(ActionEvent e)

JTextField ActionListener actionPerformed(ActionEvent e)
Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 20 / 37

GUI Example

import javax.swing.JFrame;
public class GUIApp {

public static void main (String[] args) {
JFrame frame = new JFrame();
frame.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);
MyApp app = new MyApp(); // JPanel
frame.getContentPane().add(app);
frame.show();

}
}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 21 / 37

GUI Example using MVC

combo : User selects Nothing, Rectangle, Message

echoArea : Report events

typing : Enter user messages

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 22 / 37

GUI Design

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 23 / 37

Instance Variables

// first click’s x-y coordinates
private int lastX = 0;
private int lastY = 0;
private int clickNumber = 0;
private JComboBox combo;
private String[] choices =

{"Nothing", "Rectangle", "Message"};
private JTextArea echoArea;
private JTextField typing;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 24 / 37

Initialization Code (1/2)

public Skeleton() {
// Set the background color
// and mouse listener
setBackground(Color.white);
addMouseListener(new MouseHandler());

// Add a button to the Panel.
JButton clearButton = new JButton("Clear");
clearButton.setForeground(Color.black);
clearButton.setBackground(Color.lightGray);
add(clearButton);
clearButton.addActionListener(

new ClearButtonHandler());

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 25 / 37

Initialization Code (2/2)

// Create a menu of user combos and add it
combo = new JComboBox(choices);
add(combo);
combo.addActionListener(

new ComboHandler());
// Add a TextField and a TextArea
typing = new JTextField(20);
add(typing);
typing.addActionListener(new TextHandler());
echoArea = new JTextArea(2, 40);
echoArea.setEditable(false);
add(echoArea);

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 26 / 37

Action Listener

private class ComboHandler
implements ActionListener {

public void actionPerformed (ActionEvent e) {
String c = (String)

(combo.getSelectedItem());
echoArea.setText("Combo selected: " + c);
clickNumber = 0;
if (c.equals("Rectangle"))

echoArea.append("\nClick to set upper "
+ " left corner of the rectangle");

else if (c.equals("Message"))
echoArea.append(

"\nEnter message in the text area");
}

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 27 / 37

The User Selects Rectangle from the Menu

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 28 / 37

mouseClicked Handler (1/2)

private class MouseHandler extends MouseAdapter {
public void mouseClicked(MouseEvent e) {

int x = e.getX();
int y = e.getY();
echoArea.setText("Mouse Clicked at " +

e.getX() + ", " + e.getY() + "\n");
Graphics g = getGraphics();
if (combo.getSelectedItem().

equals("Rectangle")) {
clickNumber = clickNumber + 1;

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 29 / 37

mouseClicked Handler (2/2)
// is it the first click?
if (clickNumber % 2 == 1) {

echoArea.append("Click to set lower right"
+ " corner of the rectangle");

lastX = x;
lastY = y;

}
// or the second?
else g.drawRect(lastX, lastY,

Math.abs(x-lastX), Math.abs(y-lastY));
}
else if (combo.getSelectedItem().equals(

"Message"))
// for a message, display it
g.drawString(typing.getText(), x, y);

} // mouseClicked
}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 30 / 37

Selecting Rectangle Choice and ClickingTwice

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 31 / 37

main method

public static void main(String args[]) {
JFrame frame = new JFrame();
frame.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);

Skeleton panel = new Skeleton();

frame.getContentPane().add(panel);
frame.setSize(500, 500);
frame.show();

}

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 32 / 37

Event Handling in C#

Event handling in C# (and the other .NET languages) is similar to that
in Java

.NET has two approaches, Windows Forms and Windows Presentation
Foundation-we cover only the former (which is the original approach)

An application subclasses the Form predefined class (defined in
System.Windows.Forms)

There is no need to create a frame or panel in which to place the GUI
components

Label objects are used to place text in the window

Radio buttons are objects of the RadioButton class

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 33 / 37

Event Handling in C#

Components are positioned by assigning a new Point object to the
Location property of the component

private RadioButton plain = new RadioButton();
plain.Location = new Point(100, 300);
plain.Text = ‘‘Plain’’;
controls.Add(plain);

All C# event handlers have the same protocol, the return type is void and the
two parameters are of types object and EventArgs

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 34 / 37

Event Handling in C#

An event handler can have any name

A radio button is tested with the Boolean Checked property of the
button

private void rb_CheckedChanged (object o,
EventArgs e) {

if (plain.Checked)
...

}

To register an event, a new EventHandler object must be created and
added to the predefined delegate for the event.

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 35 / 37

Event Handling in C#

When a radio button changes from unchecked to checked, the
CheckedChanged event is raised

The associated delegate is referenced by the name of the event

If the handler was named rb_CheckedChanged, we could register it
on the radio button named plain with:

plain.CheckedChanged +=
new EventHandler (rb_CheckedChanged);

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 36 / 37

Summary

An event is a notification that something has occurred that requires
handling by an event handler

Java event handling is defined on the Swing components

C# event handling is the .NET model, which is similar to the Java
model

Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014 37 / 37

