<u>Kinetic Problem</u>

1. According to the equation,

 $2 \operatorname{NO}(g) + \operatorname{Br}_2(g) \rightarrow 2 \operatorname{NOBr}(g)$

In a certain reaction mixture the rate of formation of NOBr(g) was found to be 4.50 x 10^{-4} mol L⁻¹ s⁻¹. What is the rate of consumption of Br₂(g), also in mol L⁻¹ s⁻¹?

a.	$4.50 \ge 10^{-4} \mod L^{-1} \text{ s}^{-1}$	
b.	$2.25 \text{ x } 10^{-4} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$	$\frac{1}{2}(-r_{\rm NO}) = (-r_{\rm Br2}) = \frac{1}{2} (r_{\rm NOBr})$
c.	$9.00 \ge 10^{-4} \mod L^{-1} \text{ s}^{-1}$	
	$2.12 \text{ x } 10^{-4} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$	$= (-r_{Br2}) = \frac{1}{2} (r_{NOBr}) = \frac{1}{2} (4.50 \text{ x } 10^{-4}) = 2.25 \text{ x } 10^{-4} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$
e.	$2.03 \text{ x } 10^{-3} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$	

2. The units in which the rate of a chemical reaction in solution is measured are (could be);

a.	$L^2 \text{ mol}^{-1} \text{ s}^{-1}$	
b.	mol L^{-1} s ⁻¹	$rate = \frac{\Delta[A]}{M} = \frac{M}{M} = \frac{mol}{mol} = mol.L^{-1}.sec^{-1}$
c.	s ⁻²	$rate = \frac{1}{\Delta t} = \frac{1}{\sec} = \frac{1}{L.\sec} = \frac{1}{L.\sec}$
d.	mol s L^{-1}	
e.	sec L ⁻¹ mol ⁻¹	

3. If a reaction involving a single reactant is first order with a rate constant of $4.50 \times 10^{-2} \text{ s}^{-1}$, how much time is required for 75.0% of the initial quantity of reactant to be used up?

a. <mark>b.</mark>	16.7 seconds 30.8 seconds	$\ln \frac{[A]_o}{t+1} = kt$	
	23.1 seconds 25.3 seconds 11.6 seconds	$\left[A\right]_{t} \\ \ln \frac{100}{100 - 75} = 4.50 \times 10^{-2} \times t$	
с.	11.0 seconds	100 - 75 100 ÷ 25 = ln, ans, = ÷(4.50x10 ⁻²) = t = 30.8 sec	

4. A reaction has the rate law, rate = $k[A][B]^2$. Which one of the following will cause the greatest increase in the reaction rate?

a.	decreasing the temperature without changing the concentrations	а.	$T\downarrow$, rate \downarrow
b. c.	doubling the concentration of B quadrupling the concentration of A	b.	Rate $\approx [2B]^2 = 4rate$
d.	tripling the concentration of B	с.	<i>Rate</i> \approx [4 <i>A</i>] = 4 <i>rate</i>
e.	doubling the concentration of A	d.	Rate $\approx [3B]^2 = 9rate$
		e.	<i>Rate</i> \approx [2 <i>A</i>] = 2 <i>rate</i>

5. The reaction, $2 \operatorname{NO}(g) + O_2(g) \rightarrow 2 \operatorname{NO}_2(g)$, was found to be first order in each of the two reactants and second order overall. The rate law should therefore be written as;

a.	rate = $k[NO]^2$	
b.	rate = $k([NO][O_2]]$	
с.	rate = $k[NO_2]^2[NO]^{-2}[O_2]^{-\frac{1}{2}}$	$Rate = k [NO] [O_2]$
d.	rate = $k[NO]^2[O_2]^2$	
e.	rate = $k([NO][O_2])^2$	

6. A reaction has the rate law, rate = $k[A][B]^2$. What is the overall order of the reaction?

a.	2	
b.	4	$Rate = k[A][B]^2$
c.	1	
d.	3	n = 1 + 2 = 3
e.	0	

7. For the reaction, $2 \text{ XO} + \text{O}_2 \rightarrow 2 \text{ XO}_2$, The rate law is therefore;

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	run # [XO] $[O_2]$ rate, mmol L ⁻¹ s ⁻¹	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0.010 0.010 2.5	
$\begin{array}{ccc} a. & \text{rate} = k[\text{XO}]^2 [\text{O}_2] \\ b. & \text{rate} = k[\text{XO}][\text{O}_2]^2 \\ c. & \text{rate} = k[\text{XO}][\text{O}_2] \\ d. & \text{rate} = k[\text{XO}][\text{O}_2] \\ d. & \text{rate} = k[\text{XO}]^2 [\text{O}_2]^2 \\ d. & \text{rate} = k[\text{XO}]^2 [\text{O}_2] \\ d. & \text{rate} = k[\text{XO}]^2 [\text{O}_2]^2 \\ d. & \text{rate} = k[\text{XO}]^2 [\text{O}_2] \\ d. & \text{rate} = k[\text{XO}]^2 [\text{O}_2]^2 \\ d. & \text{rate} = k[\text{XO}]^2 [\text{O}_2]^2 \\ d. & \text{rate} = k[\text{XO}]^2 [\text{O}_2] \\ d. & \text{rate} = k[\text{XO}]^2 [\text{O}_2]^2 \\ d. & \text{rate} = k[\text{XO}]^2 [\text{O}_2] \\ d. & \text{rate} = k[\text{XO}]^2 [\text{O}_2]^2 \\ d. & \text{rate} = k[\text{XO}]^2 [\text{O}_$	2 0.010 0.020 5.0	
b. rate = k[XO][O ₂] ² c. rate = k[XO][O ₂] h. the transformation of the second state of the second st	3 0.030 0.020 45.0	
$rate = k[XO]^2[O_2]$	rate = k[XO][O ₂] ² rate = k[XO][O ₂] rate = k[XO] ² [O ₂] rate = k[XO] ² [O ₂] ² rate = k[XO] ² /[O ₂] ²	

8. The experimental rate law is rate = k[NO][Br₂]. In a certain reaction mixture the rate of formation of NOBr(g) was found to be 4.50 x 10^{-4} mol L⁻¹ s⁻¹. Which unit below is the correct unit for the rate constant in this case?

$$\begin{array}{cccc}
 a. & \operatorname{mol} L^{-1} \mathrm{s}^{-1} \\
b. & \mathrm{s}^{-1} \\
c. & \operatorname{mol}^{2} L^{-2} \mathrm{s}^{-1} \\
d. & \operatorname{mol}^{-1} L \mathrm{s}^{-1} \\
e. & \operatorname{mol}^{-2} L^{2} \mathrm{s}^{-1}
\end{array}$$

$$\begin{array}{cccc}
 n = 1 + 1 = 2 \\
k = \frac{rate}{[A]^{2}} = \frac{M}{\mathrm{sec} \cdot M^{2}} = \frac{1}{M.\mathrm{sec}} = \frac{L}{mol.\mathrm{sec}} = mol^{-1} \cdot L.\mathrm{sec}^{-1} \\
\end{array}$$

9. Given the reaction,

$$aA+bB \xrightarrow{C} dD+eE$$

where C is a catalyst and rate = $k[A]^{q}[B]^{r}[C]^{s}$, which one of the statements below is **false**?

- a. The exponents q, r, and s are often integers.
- b. The exponent s must be determined experimentally.
- c. The exponents q and r are equal to the coefficients a and b, respectively.
- d. The overall order of the reaction is q + r + s.
- e. The symbol k represents the rate constant.

10. The half-life of a chemical reaction was found to be independent of the quantity of material which the researcher employed. The reaction is therefore;

- a. possibly first order
- b. definitely first order
- c. zero order
- d. possibly second order
- e. definitely second order

11. In a first order reaction with only one reagent, the reaction was started with a concentration of reactant equal to 0.0800 molar. After exactly two hours, the concentration had fallen to 0.0400 molar. What is the molarity after exactly three hours?

a.	0.0300 M	lr	$[A]_{o} = kt = 0.693$	
b.	0.0267 M		$\frac{1}{[A]_t} - kt - \frac{1}{t_{1/t}}t$	
c.	0.0340 M 0.0283 M		γ_2	
e.	0.0200 M	lr.	$n\frac{0.08}{1} = \frac{0.693x3}{1}$	
			$[A]_t$ 2	
		<mark>0</mark> .	$.693x3 \div 2 = shift, \ln, ans, =, 0.08 \div ans = [A]_t = 0.0283M$	

12. A first order reaction $A \rightarrow B$ with a rate constant of 1.20 x 10⁻³ min⁻¹. If [A] = 0.0500 molar, what will the concentration be 150 minutes later?

a.	0.00900 M		$n\frac{[A]_o}{k} = kt$
b.	0.0418 M		
с.	0.00926 M		$[A]_t$
d.	0.00499 M	1	$n\frac{0.05}{1} = 1.20x10^{-3}x150$
e.	0.000333 M	1	$\prod_{i=1}^{n} = 1.20 \times 10^{-1} \times 150^{-1}$
		1	$.20x10^{-3}x150 = shift, \ln, ans = 0.05 \div ans = [A]_t = 0.0418M$

13. The rate constant for a first order decomposition reaction is 0.0111 min⁻¹. What is $t_{1/2}$?

a.	111 min	
b.	62.4 min	0.693 0.693
c.	5000 sec	$t_{\frac{1}{12}} = \frac{0.095}{k} = \frac{0.095}{0.0111} = 62.4 \text{ min}$
d.	31.25 min	-/2 K 0.0111
e.	27.1 min	

14. Given a reaction, $2 A + B \rightarrow P$, for which the observed rate law is rate = k[A]. Which one of the following is true?

a. [A] = 1/kt
b. *ln*[A] = k/t
c. 1/[A] = kt
d. the half-life is 0.693/k
e. e^[A] = -kt

15. In a first order reaction, what fraction of the material will remain after 4 half-lives?

a.	1/16	
b.	1/8	
с.	1/9	$t_{1/2}(4) = \frac{t_{1/2}}{2n} = \frac{t_{1/2}}{24} = \frac{t_{1/2}}{16}$
d.	1/8 1/9 1/4 1/3	/2 2 2 10
e.	1/3	

16. The initial concentration of a reactant in a first order reaction is 0.620 molar. What will be its concentration after 3 half-lives?

a.	0.0865 M	
b.	0.310 M	$t_{1,2}(3) = \frac{[A]_o}{2} = \frac{0.620}{2} = \frac{0.620}{2} = 0.0775M$
c.	0.0775 M	$l_{\frac{1}{2}}(5) = \frac{1}{2^{n}} = \frac{1}{2^{3}} = \frac{1}{8} = 0.0775 M$
d.	0.103 M	
e.	0.207 M	

17. For the reaction, $A \rightarrow B + C$, the rate law is k[A]. If it takes 80.0 seconds for 70.0% of a 10.0 gram sample of A to be transformed into products, what is the value of the rate constant?

a.	0.00450 s^{-1}	$\ln \frac{[A]_o}{kt} = kt$
b.	0.0290 s ⁻¹	$\operatorname{Im} \frac{\operatorname{Im} [A]_{t}}{[A]_{t}} = kt$
c.	0.00530 s^{-1}	$\ln \frac{100}{100} = kx80$
d.	0.0150 s ⁻¹	$m\frac{100-70}{100-70} = k.300$
e.	5.40 s ⁻¹	$100 \div 30 =, \ln, ans, =, \div 80 = k = 0.0150s^{-1}$

18. A reaction is first order overall. For a given sample, if its initial rate is 0.0200 mol $L^{-1} s^{-1}$ and 25.0 days later its rate dropped to 6.25 x 10^{-4} mol $L^{-1} s^{-1}$, what is its half-life?

a.	25.0 days	$\ln \frac{[A]_o}{dt} = kt = \frac{0.693}{dt}t$	
b.	50.0 days	$\operatorname{III}_{[A]_{t}}^{I} = \kappa t - \frac{1}{t_{1/2}} t$	
c.	12.5 days	$\ln \frac{0.02}{1} = \frac{0.693}{2} \times 25$	
<mark>d.</mark>	5.0 days	$\ln \frac{1}{6.26 \times 10^{-4}} = \frac{1}{t_{1/2}} \times 25$	
e.	37.5 days	$0.02 \div 6.26 \times 10^{-4} =, \ln, ans, 0.693 \times 25 \div ans = t_{\frac{1}{2}} = 5 days$	

- 19. For a one step reaction, the activation energy for the forward reaction is 40.0 kJ mol⁻¹, and the enthalpy of reaction is -20.0 kJ mol⁻¹. Which statement below is true?
 - a. The activation energy of the forward reaction would be affected to a greater extent than the activation energy of the reverse reaction by addition of a catalyst.
 - b. The value for the enthalpy of reaction would be decreased by addition of a catalyst.
 - c. The reaction is endothermic.
 - d. The reverse reaction is slower than the forward reaction (smaller rate constant).
 - e. The reaction rate would be decreased by an increase in temperature.
- 20. For a one step reaction, the activation energy for the forward reaction is 40.0 kJ mol⁻¹, and the enthalpy of reaction is -20.0 kJ mol⁻¹. Calculate the activation energy for the reverse reaction.

a.	+60.0 kJ mol ⁻¹	
b.	-20.0 kJ mol ⁻¹	Activation energy
c.	-1200 kJ kJ mol ⁻¹	
d.	+20.0 kJ kJ mol-1	Reactant
e.	+1200 kJ kJ mol-1	AH Product

21. The activation energy for a reaction can be found by finding the slope of a plot of l(k) vs T⁻¹ and

a.	adding this slope to -R	$E_{a} = E_{a} \left(1\right)$	
b.	multiplying this slope by 2.303	$\ln k = \ln A - \frac{E_a}{R} \left(\frac{1}{T}\right)$	
c.	dividing this slope by -R	y = b + mx	
d.	multiplying this slope by 2.303R	$y = \ln k$, $x = \frac{1}{T}$, $m = \frac{-E_a}{R}$	
e.	multiplying this slope by –R		
		$mx(-R) = E_a$	

22. For a chemical reaction, the rate constant at 250.0 °C is 0.00383 s⁻¹, and the activation energy is 22.40 kilojoules. Calculate the value of the rate constant at 335.0 °C.

a.	0.00513 s ⁻¹	$k_1 = E_a \left(T_1 - T_2 \right)$
b.	0.00946 s ⁻¹	$\ln \frac{1}{k_2} = \frac{1}{R} \left(\frac{1}{T_1 x T_2} \right)$
c.	0.00787 s^{-1}	0.00383 22.40 (523-608)
d.	0.0224 s ⁻¹	$\lim \frac{1}{k_2} = \frac{1}{8.314 \times 10^{-3}} \left(\frac{1}{523 \times 608} \right)$
e.	0.000640 s ⁻¹	$22.4x(-85) \div (8.314x10^{-3}) \div 523 \div 608 =, shift, \ln, ans = 0.00383 \div ans = k_2 = 0.00787 \text{ sec}^{-1}$

23. The rate constant for a certain chemical reaction is 0.00250 L mol⁻¹ s⁻¹ at 25.0 °C and 0.0125 L mol⁻¹ s⁻¹ at 50.0 °C. What is the activation energy for the reaction, expressed in kJ?

a.	25.1 kJ	$E_a \left(T_1 - T_2 \right)$
<mark>b.</mark>	51.6 kJ	$\ln \frac{1}{k_2} = \frac{1}{R} \left(\frac{1}{T_1 x T_2} \right)$
c.	37.6 kJ	$E_a = (298 - 323)$
d.	45.3 kJ	$III \frac{1}{0.0125} = \frac{1}{8.314 \times 10^{-3}} \left(\frac{1}{298 \times 323} \right)$
e.	60.3 kJ	$0.0025 \div 0.0125 =$, ln, ans = $x(8.314x10^{-3})x298x323 \div (-25) = E_a = 51.6kJ$

25. Which one of the following statements concerning the rate of a chemical reaction is false?

a. It will be very rapid if the activation energy is large.

- b. It will be slow if one or more of the steps is slow.
- c. It may be inhibited sometimes by certain catalytic agents.
- d. It is dependent on temperature.
- e. It often increases when the concentrations of one of the reactants is increased.

26. A variable which has **no** effect on the rate of a chemical reaction under any circumstances is;

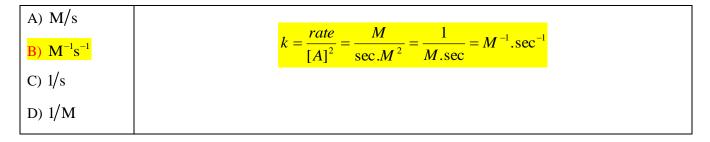
- a. energy of activation
- b. catalyst
- c. concentration of the reactants
- d. temperature
- e. standard enthalpy of reaction for the system

- 27. A catalyst alters the rate of a chemical reaction by
 - a. providing an alternate pathway which has a different activation energy
 - b. changing the products formed in the reaction
 - c. changing the frequency of collisions between molecules
 - d. always providing a surface on which molecules react
 - e. changing the enthalpy of reaction for the reaction

28. Consider the following reaction:

 $3A \rightarrow 2B$

The average rate of appearance of B is given by $\Delta [B] / \Delta t$. Comparing the rate of appearance of B and the rate of disappearance of A, we get $\Delta [B] / \Delta t = \underline{\qquad} \times (-\Delta [A] / \Delta t)$


A) -2/3	$1_{(r)}$	
B) +2/3	$\frac{1}{3}(-r_{NH3}) = \frac{1}{2}(r_B)$	
C) -3/2	$(r_B) = \frac{2}{3}(-r_A)$	
D) +1		
	2	
	3	

29. Which substance in the reaction below either appears or disappears the fastest?

 $4\mathrm{NH}_3 + 7\mathrm{O}_2 \rightarrow 4\mathrm{NO}_2 + 6\mathrm{H}_2\mathrm{O}$

A) NH ₃	$\frac{1}{4}(-r_{NH3}) = \frac{1}{7}(-r_{O2}) = \frac{1}{4}(r_{NO2}) = \frac{1}{6}(r_{H2O})$
B) O ₂	
C) NO ₂	$(r_{O2}) = \frac{7}{4}(r_{NH3}) = \frac{7}{4}(r_{NO2}) = \frac{7}{6}(r_{H2O})$ (r_{D2}) = fraction
D) H ₂ O	$(r_{O2}) = fastest$

30. The overall order of a reaction is 2. The units of the rate constant for the reaction are _____

A flask is charged with 0.124 mol of A and allowed to react to form B according to the reaction A(g) \rightarrow B(g). The following data are obtained for [A] as the reaction proceeds in 1L flask: (31-33)

Time (s)	0.00	10.0	20.0	30.0	40.0
Moles of A	0.124	0.110	0.088	0.073	0.054

31. The average rate of disappearance of A between 10 s and 20 s is _____ mol/s.

|--|

32. The average rate of appearance of B between 20 s and 30 s is _____ mol/s.

A) $+1.5 \times 10^{-3}$	
B) $+5.0 \times 10^{-4}$	$rate = \frac{\Delta[B]}{\Delta[B]} = \frac{0.088 - 0.0073}{0.0073} = 1.5 \times 10^{-3}$
C) -1.5×10^{-3}	Δt 30-20
D) $+7.3 \times 10^{-3}$	

33. How many moles of B are present at 10 s?

A) 0.011	
B) 0.220	$\Delta[B] = [B]_{10} - [B]_0 = 0.124 - 0.110 = 0.014$
C) 0.110	$rate = \frac{\Delta [D]}{\Delta t} = \frac{[D]_{10}}{t-0} = \frac{0.124}{10-0} = 0.014$
D) 0.014	

34. At the start of an experiment, there are 0.200 mol of reactant and 0 mol of product in the reaction vessel (1L). After 25 min, 0.108 mol of reactant (CH_3NC) remain. There are _____ mol of

product (CH_3CN) in the reaction vessel.

 $CH_3NC(g) \rightarrow CH_3CN(g)$

A) 0.022	
B) 0.540	
C) 0.200	$\Delta[CH_3CN] = 0.200 - 0.108 = 0.092M$
D) 0.308	
E) 0.092	

35. If the rate law for the reaction;

$2A + 3B \rightarrow \text{products}$

is first order in A and second order in B, then the rate law is rate = _____.

A) $k[A][B]$	
B) $k[A]^{2}[B]^{3}$	
C) k[A][B] ²	$rate = k[A] [B]^2$
D) $k[A]^{2}[B]$	

36. The kinetics of the reaction below were studied and it was determined that the reaction rate increased by a factor of 9 when the concentration of B was tripled. The reaction is ______ order in B. $A + B \rightarrow P$

		$Rate = k[B]^{x}$ 9rate=[3B] ^x X=2	
A) zero	B) first	C) <mark>second</mark>	D) third

37. A reaction was found to be third order in A. Increasing the concentration of A by a factor of $\frac{3}{3}$ will cause the reaction rate to _____.

$$Rate = k[B]^{3}$$

$$rate = [3B]^{3}$$

$$rate = 3^{3} times = 27$$

A) remain constantB) increase by a factor of 27C) increase by a factor of 9D) triple

The data in the table below were obtained for the reaction: (38-40)

 $A + B \rightarrow P$

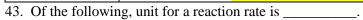
Experiment			Initial Rate
Number	[A] (M)	[B] (M)	(M/s)
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

38. The order of the reaction in A is _____.

A)	1				
B) C) D)		$\frac{r_3}{r_1} = (\frac{[A]_3}{[A]_1})^x,$	$\frac{25.47}{2.83} = \left(\frac{0.819}{0.273}\right)^x$	$9 = (3)^{x}$	<i>x</i> = 2

39. The order of the reaction in B is _____.

A) 1 B) 2 C) 3 D) 4 E) 0	$\frac{r_2}{r_1} = \left(\frac{[B]_2}{[B]_1}\right)^y, \frac{2.83}{2.83} = \left(\frac{1.526}{0.763}\right)^y 1 = (2)^x y = 0$
40. The overall order of the reacti	on is
	n = 2 + 0 = 2
A) 1 B) 2 C) 3	
C) 3	
D) 4	
41. For a first-order reaction, a pl	ot of versus is linear.


A) $\ln [A]_{t}, \frac{1}{t}$	$\ln \frac{[A]_o}{[A]_t} = kt$	
$B) \ln \left[A\right]_{t}, t$	$\ln[A]_o - \ln[A]_t = kt$	
C) $\frac{1}{[A]_t}$, t	$\ln[A]_{t} = \ln[A]_{o} - kt$ $y = b + mx$	
$\begin{bmatrix} \mathbf{A} \mathbf{J}_{t} \\ \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{A} \end{bmatrix}_{t}, t$	$y = \ln[A]_t x = t m = -k$	

42. The reaction below is first order in $[H_2O_2]$:

$$2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$$

A solution originally at 0.600 M H_2O_2 is found to be 0.075 M after 54 min. The half-life for this reaction is _____ min.

A) 6.8 B) 18 C) 14	$\ln \frac{[A]_{o}}{[A]_{t}} = kt = \frac{0.693}{t_{\frac{1}{2}}}t$	
D) 28	$\ln \frac{0.6}{0.075} = \frac{0.693}{t_{\frac{1}{12}}} x54$	
	$0.6 \div 0.075 =, \ln, ans, 0.693x54 \div ans = t_{\frac{1}{2}} = 18 days$	

A) mol/L B) M/s C) L/mol s	$rate = \frac{\Delta[A]}{\Delta t} = \frac{M}{\sec} = \frac{mol}{L.\sec} = mol.L^{-1}.\sec^{-1}$
D) s/mol.L	

44. The data in the table below were obtained for the reaction

	Α	+	В	\rightarrow	Ρ
--	---	---	---	---------------	---

	Experiment			Initial Rate		
	Number	[A] (M)	[B] (M)	(M/s)		
	1	0.273	0.763	2.83		
	2	0.273	1.526	2.83		
	3	0.819	0.763	25.47		
The rate law for this react	ion is rate =	•		•		
A) k[A][B] B) k[P]	$\frac{r_2}{r_1} =$	$=\left(\frac{\left[B\right]_{2}}{\left[B\right]_{1}}\right)^{y},$	$\frac{2.83}{2.83} =$	$\left(\frac{1.526}{0.763}\right)^{y}$ 1	$x = (2)^x y = 0$	
C) $k[A]^2[B]$						
D) $k[A]^{2}[B]^{2}$ E) $k[A]^{2}$		$(\frac{[A]_3}{[A]_1})^x,$ $= k[A]^2$	$\frac{25.47}{2.83} =$	$\left(\frac{0.819}{0.273}\right)^{x}$	$9 = (3)^x x = 2$	

45. A compound decomposes by a first-order process. If 25.0 % of the compound decomposes in 60.0 minutes, the half-life of the compound is _____.

	$\ln \frac{[A]_o}{[A]} = kt = \frac{0.693}{t}t$	
A) 65 minutesB) 120 minutes	$\begin{bmatrix} A \end{bmatrix}_t \qquad t_{\frac{1}{2}}$	
C) 145 minutes	$\ln \frac{100}{100 - 25} = \frac{0.693}{t_{1/2}} x60$	
D) 180 minutes	/2	
	$100 \div 75 =$, ln, ans, 0.693x60 ÷ ans = $t_{\frac{1}{2}} = 145 \min utes$	

46. Of the following, ______ will lower the activation energy for a reaction.

A) increasing the concentrations of reactants

B) raising the temperature of the reaction

C) adding a catalyst for the reaction

D) removing products as the reaction proceeds

47. A particular first-order reaction has a rate constant of $1.35 \times 10^2 \text{ s}^{-1}$ at 25.0 °C. What is the magnitude of k at 95.0 °C if $E_a = 55.5 \text{ kJ/mol}$?

A) 9.56×10^{3} B) 2.85×10^{4} C) 576 D) 4.33×10^{87}	$\ln \frac{1}{k_2} = \frac{a}{R} \left(\frac{1}{T_1 x T_2} \right)$ $\ln \frac{1}{25} x \ln^2 = 55.5 (208 - 368)$
--	---