Kinetic Problem

1. According to the equation,

$$
2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{NOBr}(g)
$$

In a certain reaction mixture the rate of formation of $\operatorname{NOBr}(g)$ was found to be $4.50 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
What is the rate of consumption of $\mathrm{Br}_{2}(g)$, also in $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$?
a. $\quad 4.50 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
b. $\quad 2.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
c. $\quad 9.00 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
d. $\quad 2.12 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
e. $\quad 2.03 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$

$$
\begin{gathered}
1 / 2\left(-\mathrm{r}_{\mathrm{NO}}\right)=\left(-\mathrm{r}_{\mathrm{Br} 2}\right)=1 / 2\left(\mathrm{r}_{\mathrm{NOBr}}\right) \\
=\left(-\mathrm{r}_{\mathrm{Br} 2}\right)=1 / 2\left(\mathrm{r}_{\mathrm{NOBr}}\right)=1 / 2\left(4.50 \times 10^{-4}\right)=2.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}
\end{gathered}
$$

2. The units in which the rate of a chemical reaction in solution is measured are (could be);

a.	$\mathrm{L}^{2} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$	
b.	$\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$	rate $=\frac{\Delta[A]}{\Delta t}=\frac{M}{\mathrm{sec}}=\frac{\mathrm{mol}}{L \cdot \mathrm{sec}}=m o l . L^{-1} \cdot \mathrm{sec}^{-1}$
c.	s^{-2}	
d.	$\mathrm{mol} \mathrm{s} \mathrm{L}^{-1}$	
e.	sec L- mol^{-1}	

3. If a reaction involving a single reactant is first order with a rate constant of $4.50 \times 10^{-2} \mathrm{~s}^{-1}$, how much time is required for 75.0% of the initial quantity of reactant to be used up?

a. 16.7 seconds b. 30.8 seconds c. 23.1 seconds d. 25.3 seconds e. 11.6 seconds	$\ln \frac{[A]_{o}}{[A]_{t}}=k t$	
		$\ln \frac{100}{100-75}=4.50 \times 10^{-2} x t$

4. A reaction has the rate law, rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$. Which one of the following will cause the greatest increase in the reaction rate?

a.	decreasing the temperature without changing the concentrations		
b.	doubling the concentration of B	a.	$T \downarrow$, rate \downarrow
c.	quadrupling the concentration of A	b.	Rate $\approx[2 B]^{2}=4$ rate
d.	tripling the concentration of B	c.	Rate $\approx[4 A]=4$ rate
e.	doubling the concentration of A	d.. Rate $\approx[3 B]^{2}=9$ rate	
	e. Rate $\approx[2 A]=2$ rate		

5. The reaction, $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$, was found to be first order in each of the two reactants and second order overall. The rate law should therefore be written as;

a.	rate $=\mathrm{k}[\mathrm{NO}]^{2}$		
b.	rate $=\mathrm{k}\left([\mathrm{NO}]\left[\mathrm{O}_{2}\right]\right.$		Rate $=\mathrm{k}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]$
c.	rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}[\mathrm{NO}]^{-2}\left[\mathrm{O}_{2}\right]^{-1 / 2}$		
d.	rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]^{2}$		
e.	rate $=\mathrm{k}\left([\mathrm{NO}]\left[\mathrm{O}_{2}\right]\right)^{2}$		

6. A reaction has the rate law, rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]^{2}$. What is the overall order of the reaction?

a.	2	
b.	4	
c.	1	Rate $=k[A][B]^{2}$
d.	3	$n=1+2=3$
e.	0	

7. For the reaction, $2 \mathrm{XO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{XO}_{2}$, The rate law is therefore;

$$
\begin{array}{cccc}
\text { run \# } & {[\mathrm{XO}]} & {\left[\mathrm{O}_{2}\right]} & \text { rate, } \mathrm{mmol} \mathrm{~L}^{-1} \mathrm{~s}^{-1} \\
1 & 0.010 & 0.010 & 2.5 \\
2 & 0.010 & 0.020 & 5.0 \\
3 & 0.030 & 0.020 & 45.0
\end{array}
$$

a. \quad rate $=\mathrm{k}[\mathrm{XO}]^{2}\left[\mathrm{O}_{2}\right]$ b. \quad rate $=\mathrm{k}[\mathrm{XO}]\left[\mathrm{O}_{2}\right]^{2}$ c. \quad rate $=\mathrm{k}[\mathrm{XO}]\left[\mathrm{O}_{2}\right]$ d. \quad rate $=\mathrm{k}[\mathrm{XO}]^{2}\left[\mathrm{O}_{2}\right]^{2}$ e. \quad rate $=\mathrm{k}[\mathrm{XO}]^{2} /\left[\mathrm{O}_{2}\right]^{2}$	$\begin{aligned} & \frac{r_{2}}{r_{1}}=\left(\frac{\left[O_{2}\right]_{2}}{\left[O_{2}\right]_{1}}\right)^{x}, \quad \frac{5}{2.5}=\left(\frac{0.02}{0.01}\right)^{x} \\ & \frac{r_{3}}{r_{2}}=\left(\frac{[\mathrm{XO}]_{3}}{[\mathrm{XO}]_{2}}\right)^{y}, \quad \frac{45}{5}=\left(\frac{0.03}{0.01}\right)^{y} \\ & \text { rate }=k[\mathrm{XO}]^{2}\left[O_{2}\right] \end{aligned}$	$2=(2)^{x}$ $9=(3)^{y}$	$x=1$ $y=2$

8. The experimental rate law is rate $=\mathrm{k}[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]$. In a certain reaction mixture the rate of formation of $\operatorname{NOBr}(g)$ was found to be $4.50 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. Which unit below is the correct unit for the rate constant in this case?

$$
2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{NOBr}(g)
$$

a.	$\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$	
b.	s^{-1}	
c.	$\mathrm{mol}^{2} \mathrm{~L}^{-2} \mathrm{~s}^{-1}$	
d.	$\mathrm{mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$	
e.	$\mathrm{mol}^{-2} \mathrm{~L}^{2} \mathrm{~s}^{-1}$	$k=\frac{r a t e}{[A]^{2}}=\frac{M}{\sec \cdot M^{2}}=\frac{1}{M \cdot \mathrm{sec}}=\frac{L}{m o l \cdot \mathrm{sec}}=m o l^{-1} \cdot L \cdot \mathrm{sec}^{-1}$

9. Given the reaction,

$$
\mathrm{aA}+\mathrm{bB} \xrightarrow{\mathrm{C}} \mathrm{dD}+\mathrm{eE}
$$

where C is a catalyst and rate $=k[A]^{\mathrm{q}}[\mathrm{B}]^{\mathrm{r}}[\mathrm{C}]^{\mathrm{s}}$, which one of the statements below is false?
a. The exponents q, r, and s are often integers.
b. The exponent s must be determined experimentally.
c. The exponents q and r are equal to the coefficients a and b, respectively.
d. The overall order of the reaction is $q+r+s$.
e. The symbol k represents the rate constant.
10. The half-life of a chemical reaction was found to be independent of the quantity of material which the researcher employed. The reaction is therefore;
a. possibly first order
b. definitely first order
c. zero order
d. possibly second order
e. definitely second order
11. In a first order reaction with only one reagent, the reaction was started with a concentration of reactant equal to 0.0800 molar. After exactly two hours, the concentration had fallen to 0.0400 molar. What is the molarity after exactly three hours?
a. $\quad 0.0300 \mathrm{M}$
b. $\quad 0.0267 \mathrm{M}$
c. $\quad 0.0340 \mathrm{M}$
$\ln \frac{[A]_{o}}{[A]_{t}}=k t=\frac{0.693}{t_{1 / 2}} t$
d. $\quad 0.0283 \mathrm{M}$
e. $\quad 0.0200 \mathrm{M}$

$$
\begin{aligned}
& \ln \frac{0.08}{[A]_{t}}=\frac{0.693 \times 3}{2} \\
& 0.693 \times 3 \div 2=\text { shift }, \ln , \text { ans },=, 0.08 \div \text { ans }=[A]_{t}=0.0283 \mathrm{M}
\end{aligned}
$$

12. A first order reaction $A \rightarrow B$ with a rate constant of $1.20 \times 10^{-3} \mathrm{~min}^{-1}$. If $[A]=0.0500$ molar, what will the concentration be 150 minutes later?

a.	0.00900 M	$\ln \frac{[A]_{o}}{[A]_{t}}=k t$
b.	0.0418 M	$\ln \frac{0.05}{[A]_{t}}=1.20 \times 10^{-3} \times 150$
c.	0.00926 M	$1.20 \times 10^{-3} \times 150=$ shift, \ln, ans $=0.05 \div$ ans $=[A]_{t}=0.0418 \mathrm{M}$
d.	0.00499 M	0.000333 M

13. The rate constant for a first order decomposition reaction is $0.0111 \mathrm{~min}^{-1}$. What is $\mathrm{t}_{1 / 2}$?

a.	111 min	
b.	62.4 min	$t_{1 / 2}=\frac{0.693}{k}=\frac{0.693}{0.0111}=62.4 \mathrm{~min}$
c.	5000 sec	
d.	31.25 min	
e.	27.1 min	

14. Given a reaction, $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{P}$, for which the observed rate law is rate $=\mathrm{k}[\mathrm{A}]$. Which one of the following is true?
a. $[\mathrm{A}]=1 / \mathrm{kt}$
b. $\ln [\mathrm{A}]=\mathrm{k} / \mathrm{t}$
c. $1 /[\mathrm{A}]=\mathrm{kt}$
d. the half-life is $0.693 / \mathrm{k}$
e. $e^{[\mathrm{A}]}=-\mathrm{kt}$
15. In a first order reaction, what fraction of the material will remain after 4 half-lives?

a.	$1 / 16$	
b.	$1 / 8$	$t_{1 / 2}(4)=\frac{[A]_{o}}{2^{n}}=\frac{1}{2^{4}}=\frac{1}{16}$
c.	$1 / 9$	
d.	$1 / 4$	
e.	$1 / 3$	

16. The initial concentration of a reactant in a first order reaction is 0.620 molar. What will be its concentration after 3 half-lives?

a.	0.0865 M	
b.	0.310 M	$t_{1 / 2}(3)=\frac{[A]_{o}}{2^{n}}=\frac{0.620}{2^{3}}=\frac{0.620}{8}=0.0775 \mathrm{M}$
c.	0.0775 M	
d.	0.103 M	
e.	0.207 M	

17. For the reaction, $\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$, the rate law is $\mathrm{k}[\mathrm{A}]$. If it takes 80.0 seconds for 70.0% of a 10.0 gram sample of A to be transformed into products, what is the value of the rate constant?

a.	$0.00450 \mathrm{~s}^{-1}$	$\ln \frac{[A]_{o}}{[A]_{t}}=k t$
b.	$0.0290 \mathrm{~s}^{-1}$	$\ln \frac{100}{100-70}=k x 80$
c.	$0.00530 \mathrm{~s}^{-1}$	$100 \div 30=, \ln$, ans,$=, \div 80=k=0.0150 \mathrm{~s}^{-1}$
d.	$0.0150 \mathrm{~s}^{-1}$	
e.	$5.40 \mathrm{~s}^{-1}$	

18. A reaction is first order overall. For a given sample, if its initial rate is $0.0200 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and 25.0 days later its rate dropped to $6.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, what is its half-life?

$$
\begin{array}{ll|l}
\hline \text { a. } & 25.0 \text { days } & \ln \frac{[A]_{o}}{[A]_{t}}=k t=\frac{0.693}{t_{1}} t \\
\text { b. } & 50.0 \text { days } & \\
\text { c. } & 12.5 \text { days } & \ln \frac{0.02}{6.26 \times 10^{-4}}=\frac{0.693}{t_{1 / 2}} \times 25 \\
\text { d. } & 5.0 \text { days } & 0.02 \div 6.26 \times 10^{-4}=, \ln , \text { ans }, 0.693 \times 25 \div \text { ans }=t_{1 / 2}=5 \text { days } \\
\text { e. } & 37.5 \text { days } &
\end{array}
$$

19. For a one step reaction, the activation energy for the forward reaction is $40.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and the enthalpy of reaction is $-20.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Which statement below is true?
a. The activation energy of the forward reaction would be affected to a greater extent than the activation energy of the reverse reaction by addition of a catalyst.
b. The value for the enthalpy of reaction would be decreased by addition of a catalyst.
c. The reaction is endothermic.
d. The reverse reaction is slower than the forward reaction (smaller rate constant).
e. The reaction rate would be decreased by an increase in temperature.
20. For a one step reaction, the activation energy for the forward reaction is $40.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and the enthalpy of reaction is $-20.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the activation energy for the reverse reaction.

21. The activation energy for a reaction can be found by finding the slope of a plot of $l(\mathrm{k}) v s \mathrm{~T}^{-1}$ and
a. adding this slope to -R
b. multiplying this slope by 2.303
c. dividing this slope by -R
d. multiplying this slope by 2.303 R
e. multiplying this slope by -R

$$
\begin{aligned}
& \ln k=\ln A-\frac{E_{a}}{R}\left(\frac{1}{T}\right) \\
& y=b+m x \\
& y=\ln k, \quad x=\frac{1}{T}, \quad m=\frac{-E_{a}}{R} \\
& m x(-R)=E_{a}
\end{aligned}
$$

22. For a chemical reaction, the rate constant at $250.0^{\circ} \mathrm{C}$ is $0.00383 \mathrm{~s}^{-1}$, and the activation energy is 22.40 kilojoules. Calculate the value of the rate constant at $335.0^{\circ} \mathrm{C}$.

a.	$0.00513 \mathrm{~s}^{-1}$	$\ln \frac{k_{1}}{k_{2}}=\frac{E_{a}}{R}\left(\frac{T_{1}-T_{2}}{T_{1} x T_{2}}\right)$
b.	$0.00946 \mathrm{~s}^{-1}$	
c.	$0.00787 \mathrm{~s}^{-1}$	$\ln \frac{0.00383}{k_{2}}=\frac{22.40}{8.314 \times 10^{-3}}\left(\frac{523-608}{523 x 608}\right)$
d.	$0.0224 \mathrm{~s}^{-1}$	$22.4 x(-85) \div\left(8.314 \times 10^{-3}\right) \div 523 \div 608=$, shift, \ln, ans $=0.00383 \div$ ans $=k_{2}=0.00787 \mathrm{sec}^{-1}$
e.	$0.000640 \mathrm{~s}^{-1}$	22

23. The rate constant for a certain chemical reaction is $0.00250 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $25.0{ }^{\circ} \mathrm{C}$ and $0.0125 \mathrm{~L} \mathrm{~mol}^{-1}$ s^{-1} at $50.0^{\circ} \mathrm{C}$. What is the activation energy for the reaction, expressed in kJ ?

a.	25.1 kJ	$\ln \frac{k_{1}}{k_{2}}=\frac{E_{a}}{R}\left(\frac{T_{1}-T_{2}}{T_{1} x T_{2}}\right)$
b.	51.6 kJ	$\ln \frac{0.0025}{0.0125}=\frac{E_{a}}{8.314 \times 10^{-3}}\left(\frac{298-323}{298 \times 323}\right)$
c.	37.6 kJ	45.3 kJ
d.	$0.0025 \div 0.0125=, \ln$, ans $=x\left(8.314 \times 10^{-3}\right) \times 298 \times 323 \div(-25)=E_{a}=51.6 \mathrm{~kJ}$	
e.	60.3 kJ	

25. Which one of the following statements concerning the rate of a chemical reaction is false?
a. It will be very rapid if the activation energy is large.
b. It will be slow if one or more of the steps is slow.
c. It may be inhibited sometimes by certain catalytic agents.
d. It is dependent on temperature.
e. It often increases when the concentrations of one of the reactants is increased.
26. A variable which has no effect on the rate of a chemical reaction under any circumstances is;
a. energy of activation
b. catalyst
c. concentration of the reactants
d. temperature
e. standard enthalpy of reaction for the system
27. A catalyst alters the rate of a chemical reaction by
a. providing an alternate pathway which has a different activation energy
b. changing the products formed in the reaction
c. changing the frequency of collisions between molecules
d. always providing a surface on which molecules react
e. changing the enthalpy of reaction for the reaction
28. Consider the following reaction:

$$
3 \mathrm{~A} \rightarrow 2 \mathrm{~B}
$$

The average rate of appearance of B is given by $\Delta[\mathrm{B}] / \Delta \mathrm{t}$. Comparing the rate of appearance of B and the rate of disappearance of A , we get $\Delta[\mathrm{B}] / \Delta \mathrm{t}=$ \qquad $\times(-\Delta[\mathrm{A}] / \Delta \mathrm{t})$

A) $-2 / 3$	$\frac{1}{3}\left(-r_{N H 3}\right)=\frac{1}{2}\left(r_{B}\right)$
B) $+2 / 3$	$\left(r_{B}\right)=\frac{2}{3}\left(-r_{A}\right)$
C) $-3 / 2$	$\frac{2}{3}$
D) +1	

29. Which substance in the reaction below either appears or disappears the fastest?

$$
4 \mathrm{NH}_{3}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

A) NH_{3}	$\frac{1}{4}\left(-r_{N H 3}\right)=\frac{1}{7}\left(-r_{O 2}\right)=\frac{1}{4}\left(r_{N O 2}\right)=\frac{1}{6}\left(r_{H 2 O}\right)$
B) O_{2}	$\left(r_{O 2}\right)=\frac{7}{4}\left(r_{N H 3}\right)=\frac{7}{4}\left(r_{N O 2}\right)=\frac{7}{6}\left(r_{H 2 O}\right)$
C) NO_{2}	$\left(r_{O 2}\right)=$ fastest
D) $\mathrm{H}_{2} \mathrm{O}$	

30. The overall order of a reaction is 2 . The units of the rate constant for the reaction are \qquad .
A) M / s
B) $\mathrm{M}^{-1} \mathrm{~s}^{-1}$

$$
k=\frac{\text { rate }}{[A]^{2}}=\frac{M}{\sec \cdot M^{2}}=\frac{1}{M \cdot \sec }=M^{-1} \cdot \sec ^{-1}
$$

C) $1 / \mathrm{s}$
D) $1 / \mathrm{M}$

A flask is charged with 0.124 mol of A and allowed to react to form B according to the reaction $\mathrm{A}(\mathrm{g})$ $\rightarrow \mathrm{B}(\mathrm{g})$. The following data are obtained for $[\mathrm{A}]$ as the reaction proceeds in 1L flask: (31-33)

Time (s)	0.00	10.0	20.0	30.0	40.0
Moles of A	0.124	0.110	0.088	0.073	0.054

31. The average rate of disappearance of A between 10 s and 20 s is \qquad $\mathrm{mol} / \mathrm{s}$.

A) 2.2×10^{-3}	
B) 1.1×10^{-3}	rate $=-\frac{\Delta[A]}{\Delta t}=-\frac{0.088-0.110}{20-10}=2.2 x 10^{-3}$
C) 4.4×10^{-3}	
D) 454	

32. The average rate of appearance of B between 20 s and 30 s is \qquad $\mathrm{mol} / \mathrm{s}$.
A) $+1.5 \times 10^{-3}$
B) $+5.0 \times 10^{-4}$
C) -1.5×10^{-3}

$$
\text { rate }=\frac{\Delta[B]}{\Delta t}=\frac{0.088-0.0073}{30-20}=1.5 \times 10^{-3}
$$

D) $+7.3 \times 10^{-3}$
33. How many moles of B are present at 10 s ?
A) 0.011
B) 0.220
C) 0.110
D) 0.014

$$
\text { rate }=\frac{\Delta[B]}{\Delta t}=\frac{[B]_{10}-[B]_{0}}{t-0}=\frac{0.124-0.110}{10-0}=0.014
$$

34. At the start of an experiment, there are 0.200 mol of reactant and 0 mol of product in the reaction vessel (1L). After $25 \mathrm{~min}, 0.108 \mathrm{~mol}$ of reactant $\left(\mathrm{CH}_{3} \mathrm{NC}\right)$ remain. There are \qquad mol of product $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ in the reaction vessel.

$$
\mathrm{CH}_{3} \mathrm{NC}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CN}(\mathrm{~g})
$$

A) 0.022
B) 0.540
C) 0.200
D) 0.308
E) 0.092

$$
\Delta\left[\mathrm{CH}_{3} \mathrm{CN}\right]=0.200-0.108=0.092 \mathrm{M}
$$

35. If the rate law for the reaction;

$$
2 \mathrm{~A}+3 \mathrm{~B} \rightarrow \text { products }
$$

is first order in A and second order in B , then the rate law is rate $=$ \qquad .
A) $k[A][B]$
B) $\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{3}$
C) $k[A][B]^{2}$
D) $k[A]^{2}[B]$

$$
\text { rate }=k[A][B]^{2}
$$

36. The kinetics of the reaction below were studied and it was determined that the reaction rate increased by a factor of 9 when the concentration of B was tripled. The reaction is \qquad order in B.

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P}
$$

$$
\begin{gathered}
\text { Rate }=k[B]^{x} \\
\text { 9rate }=[3 B]^{x} \\
X=2
\end{gathered}
$$

A) zero
B) first
C) second
D) third
37. A reaction was found to be third order in A. Increasing the concentration of A by a factor of 3 will cause the reaction rate to \qquad .

$$
\begin{gathered}
\text { Rate }=\mathrm{k}[\mathrm{~B}]^{3} \\
\text { rate }=[3 \mathrm{~B}]^{3} \\
\text { rate }=3^{3} \text { times }=27
\end{gathered}
$$

A) remain constant
B) increase by a factor of 27
C) increase by a factor of 9
D) triple

The data in the table below were obtained for the reaction: (38-40)

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P}
$$

Experiment Number	$[\mathrm{A}](\mathrm{M})$	$[\mathrm{B}](\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

38. The order of the reaction in A is \qquad .
A) 1
B) 2
C) 3
D) 4

$$
\frac{r_{3}}{r_{1}}=\left(\frac{[A]_{3}}{[A]_{1}}\right)^{x}, \quad \frac{25.47}{2.83}=\left(\frac{0.819}{0.273}\right)^{x} \quad 9=(3)^{x} \quad x=2
$$

39. The order of the reaction in B is \qquad .

A) 1	
B) 2 $\frac{r_{2}}{r_{1}}=\left(\frac{[B]_{2}}{[B]_{1}}\right)^{y}, \quad \frac{2.83}{2.83}=\left(\frac{1.526}{0.763}\right)^{y} \quad 1=(2)^{x} \quad y=0$ C) 3 D) 4 E) 0 ${ }^{2} \quad$	

40. The overall order of the reaction is \qquad .

$$
\mathrm{n}=2+0=2
$$

A) 1
B) 2
C) 3
D) 4
41. For a first-order reaction, a plot of \qquad versus \qquad is linear.

A) $\ln [\mathrm{A}]_{\mathrm{t}}, \frac{1}{\mathrm{t}}$		$\ln \frac{[A]_{o}}{[A]_{t}}=k t$
B) $\ln [\mathrm{A}]_{\mathrm{t}}, \mathrm{t}$	$\ln [A]_{o}-\ln [A]_{t}=k t$	
C) $\frac{1}{[\mathrm{~A}]_{\mathrm{t}}}, \mathrm{t}$	$\ln [A]_{t}=\ln [A]_{o}-k t$	
D) $[\mathrm{A}]_{\mathrm{t}}, \mathrm{t}$	$y=b+m x$	
	$y=\ln [A]_{t} \quad x=t \quad m=-k$	

42. The reaction below is first order in $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})
$$

A solution originally at $0.600 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$ is found to be 0.075 M after 54 min . The half-life for this reaction is \qquad min.

A) 6.8 B) 18 C) 14 D) 28	$\ln \frac{[A]_{o}}{[A]_{t}}=k t=\frac{0.693}{t_{1} / 2} t$
	$\ln \frac{0.6}{0.075}=\frac{0.693}{t_{1 / 2}} x 54$
	$0.6 \div 0.075=\ln$, ans, $0.693 \times 54 \div$ ans $=t_{1 / 2}=18$ days

43. Of the following, unit for a reaction rate is \qquad .

A) $\mathrm{mol} / \mathrm{L}$	rate $=\frac{\Delta[A]}{\Delta t}=\frac{M}{\mathrm{sec}}=\frac{\mathrm{mol}}{L \cdot \mathrm{sec}}=m o l \cdot L^{-1} \cdot \mathrm{sec}^{-1}$
B) M / s C) $\mathrm{L} / \mathrm{mol} \mathrm{s}$ D) $\mathrm{s} / \mathrm{mol} . \mathrm{L}$ l	

44. The data in the table below were obtained for the reaction

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{P}
$$

Experiment Number	$[\mathrm{A}](\mathrm{M})$	$[\mathrm{B}](\mathrm{M})$	Initial Rate $(\mathrm{M} / \mathrm{s})$
1	0.273	0.763	2.83
2	0.273	1.526	2.83
3	0.819	0.763	25.47

The rate law for this reaction is rate $=$
A) $k[A][B]$
B) $\mathrm{k}[\mathrm{P}]$
C) $k[A]^{2}[B]$
D) $k[A]^{2}[B]^{2}$

$$
\text { E) } \mathrm{k}[\mathrm{~A}]^{2}
$$

$\frac{r_{2}}{r_{1}}=\left(\frac{[B]_{2}}{[B]_{1}}\right)^{y}, \quad \frac{2.83}{2.83}=\left(\frac{1.526}{0.763}\right)^{y} \quad 1=(2)^{x} \quad y=0$

$$
\begin{aligned}
& \frac{r_{3}}{r_{1}}=\left(\frac{[A]_{3}}{[A]_{1}}\right)^{x}, \quad \frac{25.47}{2.83}=\left(\frac{0.819}{0.273}\right)^{x} \quad 9=(3)^{x} \quad x=2 \\
& \text { rate }=k[A]^{2}
\end{aligned}
$$

45. A compound decomposes by a first-order process. If 25.0% of the compound decomposes in 60.0 minutes, the half-life of the compound is

	$\ln \frac{[A]_{o}}{[A]_{t}}=k t=\frac{0.693}{t_{1 / 2}} t$
A) 65 minutes B) 120 minutes C) 145 minutes D) 180 minutes	$\ln \frac{100}{100-25}=\frac{0.693}{t_{1 / 2}} x 60$
	$100 \div 75=, \ln$, ans, $0.693 x 60 \div a n s=t_{1 / 2}=145 \mathrm{~min}$ utes

46. Of the following, \qquad will lower the activation energy for a reaction.
A) increasing the concentrations of reactants
B) raising the temperature of the reaction
C) adding a catalyst for the reaction
D) removing products as the reaction proceeds
47. A particular first-order reaction has a rate constant of $1.35 \times 10^{2} \mathrm{~s}^{-1}$ at $25.0^{\circ} \mathrm{C}$. What is the magnitude of k at $95.0^{\circ} \mathrm{C}$ if $\mathrm{E}=55.5 \mathrm{~kJ} / \mathrm{mol}$?

A) 9.56×10^{3}	$\ln \frac{k_{1}}{k_{2}}=\frac{E_{a}}{R}\left(\frac{T_{1}-T_{2}}{T_{1} x T_{2}}\right)$
B) 2.85×10^{4} C) 576 D) 4.33×10^{87} $\ln \frac{1.35 x 10^{2}}{k_{2}}=\frac{55.5}{8.314 \times 10^{-3}}\left(\frac{298-368}{298 x 368}\right)$ $55.5 x(-70) \div\left(8.314 \times 10^{-3} \div 298 \div 368=\right.$, shift, ln, ans $=1.35 \times 10^{2} \div$ ans $=k_{2}=9.56 \times 10^{3} \mathrm{sec}^{-1}$	

