PHYS 500 1st Midterm Exam – FALL 2019 Sunday 6th November 2016

Instructor: Prof. V. Lempesis

Please answer all questions

1. Round the following recordings at the digit which is underlined:

Recorded	7. <u>3</u> 7	3 <u>0</u> 19	3. <u>9</u> 67	<u>3</u> .501
Value				
Rounded	7.4	3000	4.0	4
Value				

(2 marks)

2. Fill in the following table by keeping significant figures and rounding properly the recorded values taken in an experiment for a physical quantity:

	Before the selection of		After the selection of		Final Result
	significant figures		significant figures		
Recorded	X	δx	δx	X	$x \pm \delta x$
value					
1	1092	11	11	1092	1092±11
2	136.4	0.129	0.13	136.40	136.40±0.13
3	528.35767	0.261	0.26	528.36	528.36±0.26
4	7.121	0.542	0.5	7.1	7.1±0.5
5	163	4.62	5	163	163±5

(5 marks)

3. You are given the following recordings for the acceleration of gravity (with a real value = 9.8 m/s^2)

$g_i \text{ (m/s}^2\text{)}$	$\left(g_i - \overline{g}\right)^2 \left(\text{m/s}^2\right)$
8.33	
8.12	
8.31	
8.30	
8.42	
$\sum_{i=1}^{5} g_i = \frac{41.48}{}$	$\sum_{i=1}^{5} \left(g_i - \overline{g} \right)^2 = 0.0472$

a) Fill in the table

(2 marks)

b) Find the average value of the acceleration of gravity:

(1 mark)

c) Find the absolute error of the average value and round it to correct number of significant digits

(2 marks)

d) Quote the experimental result:

(1 marks)

e) Find the relevant error:

(2 marks)

h) Is the above experiment precise or accurate? **Explain**

(2 marks)

Solution

b)
$$\overline{g} = 8.296 \text{ (m/s}^2\text{)}$$

c) $\delta g = 0.04884 \text{ (m/s}^2)$, thus the error, to 1 s.d is $\delta g = 0.05 \text{ (m/s}^2)$. The average value is then $\overline{g} = 8.30 \text{ (m/s}^2)$

d) The experimental result is given as $\overline{g} = (8.30 \pm 0.05) \text{ (m/s}^2)$.

e)
$$\frac{\delta \overline{g}}{\overline{g}} = \frac{0.05}{8.30} = 0.006$$
 or 0.6%

h) This is a precise measurement since the relevant error is very small. The results are clustered around the average value. Since the real value is 9.81 m/s^2 this is an not accurate experiment.

4. How many significant figures there are in the following recordings:

Recording	Number of significant digits		
64000	2		
1.20	3		
0.10000738	8		

(3 marks)

$$\delta x = \sqrt{\frac{\sum_{i=1}^{N} \left(x_i - \overline{x}\right)^2}{N(N-1)}}$$