Department of Statistics & Operations Research College of Science

STAT-324: Probability and Statistics for Engineers First Mid-Term Exam Second Semester 1436 – 1437

Student's Name (In Arabic):		Section's Number:	
Student's Number:	A	Attendance number:	
Teacher's Name:			

Instructions:

- There are 25 multiple choice questions.
- Time allowed is 90 minutes (1.5 Hour).
- For each question, put the code of the correct answer in the following table beneath the question number.
- Please, use capital letters: A, B, C, and D.
- Do not copy answers from your neighbors; they have different question forms.
- Mobile Telephones are not allowed in the classroom.

	9	8	7	6	5	4	3	2	1

11	12	13	14	15	16	17	18	19	20

21	22	23	24	25

Question (1-3):

(1) The sample mean (\bar{x}) equals:

(A) 5

(B) 7

(C) 8.5

(D) 35

(2) The sample standard deviation (S) equals:

(A) 2.7709

(B) 3.9

(C) 1.8708

(D) 0.0593

(3) The sum of deviations of observations from the sample mean, $\sum (x_i - \bar{x})$, equals:

(A) 0

(B) 1

(C)

 $\frac{\bar{x}}{2}$

Question (4-5):

(4) The number of ways for selecting 3 students from 8 students equals:

(A) 64

(B) 5

(C) 24

(D) 56

(D) $2\bar{x}$

(5) Suppose that there are 15 books on a table; 5 of which are Mathematics and 10 are Statistics. If 2 books are selected at random and removed from the table in succession without replacing the first, then the probability that both books are Mathematics equals:

(A) 0.1172

(B) 0.0006

(C) 0.5007

(D) 0.0952

Question (6-7)

Suppose that two balanced (fair) dice are tossed. Then:

(6) The probability of getting a total of 8 equals:

(A) 0.6111

(B) 0.8266

(C) 0.1389

(D) 0.0845

(7) The probability of getting at most a total of 5 equals:

(A) 0.2778

(B) 0.3860

(C) 0.0977

(D) 0.4151

Question (8-11)

A students need to register some courses offered by the College of Science this semester. The probability that he will register a Statistics course is 0.7, the probability that he will register a Mathematics course is 0.3, and the probability that he will register both courses is 0.3. Then:

(8) The probability that he will register a Statistics course only equals:

 $(A) \quad 0.4$

(B) 0.7

(C) 0.3

(D) 0.1

(9) The probability that he will register a Mathematics course only equals:

(A) 0.2

(B) 0.0

(C) 0.5

(D) 0.8

(10) The probability that he will not register a Mathematics course and will not register a Statistics course equals:

- (A) 0.6
- (B) 0.9
- (C) 0.3
- (D) 0.05

(11) If it is known that the student has registered a Mathematics course, then the probability that he will register a Statistics course equals:

- (A) 0.5
- (B) 0.8
- (C) 0.0
- (D) 1.0

Question (12- 15)

Suppose that we have two events A and B with: P(A) = 0.8, P(B) = 0.5, and $P(A \cup B) = 0.9$.

- (12) The probability $P(A \cap B)$ equals:
 - (A) 0.55
- (B) 0.4
- (C) 0.6
- (D) 0.01

- (13) The conditional probability P(B|A) equals:
 - (A) 0.2
- (B) 0.9
- (C) 0.3
- (D) 0.5

- (14) The events A and B are:
 - (A) joint
- (B) disjoint
- (C) mutually exclusive
- (D) sure events

(not disjoint)

- (15) The events A and B are:
 - (A) dependent
- (B) independent
- (C) impossible events
- (D) disjoint

(not independent)

Question (16- 17)

Suppose that in a certain STAT-324 class 20% of the students are industrial engineering students, 30% are chemical engineering students, 10% are mechanical engineering students, 40% are civil engineering students. It is known that 10% of the industrial engineering students, 6% of the chemical engineering students, 8% of mechanical engineering students, and 4% of the civil engineering students have failed the exam. If we select a student at random from this class, then:

- (16) The probability that the student failed the exam equals:
 - (A) 0.552
- (B) 0.115
- (C) 0.062
- (D) 0.227
- (17) If it is known that the selected student has failed the exam, then the probability that he is an industrial engineering student equals:
 - (A) 0.4789
- (B) 0.5903
- (C) 0.7017
- (D) 0.3226

Question (18-20)

Suppose that the random variable *X* has the following probability distribution:

X	0	1	2	3
f(x)	0.2	0.2	0.2	k

(18) The value of k equals:

 $(A) \quad 0.4$

(B) 0.2

(C) 0.6

(D) 1.0

(19) The probability P(X < 3) equals:

(A) 0.3

(B) 0.6

(C) 0.5

(D) 0.8

(20) If F(x) is the cumulative distribution function (CDF) of X, then F(0.5) equals:

(A) 0.7

(B) 0.9

(C) 0.2

(D) 0.1

Question (21-22)

Suppose that the random variable *X* has the following probability distribution:

X	0	1	2
f(x)	0.3	0.2	0.5

(21) The mean or the expected value of X ($\mu_X = E(X)$), equals:

(A) 0.5

(B) 1.0

(C) 1.2

(D) 1.9

(22) The variance of X ($\sigma_X^2 = Var(X)$), equals:

(A) 0.44

(B) 0.76

(C) 1.87

(D) 0.03

Question (23- 24)

Suppose that the random variable *X* has the following probability density function:

$$f(x) = \begin{cases} \frac{1}{50}x ; 0 < x < 10\\ 0 ; elsewhere \end{cases}$$

(23) The probability P(X > 5) equals:

(A) 0.95

(B) 0.55

(C) 0.2

(D) 0.75

(24) The mean or the expected value of X ($\mu_X = E(X)$), equals:

(A) 6.67

(B) 0.50

(C) 7.5

(D) 2.5

Question (25)

Suppose that the random variable X has a mean $\mu_X = E(X) = 100$ and a variance $\sigma_X^2 = Var(X) = 25$.

(25) The probability P(85 < X < 115) is greater than or equal to:

(A) 0.75

(B) 0.3375

(C) 0.96

(D) 0.8889