

1. For objects that move in a circle about an origin O, it can be convenient to use the mutually perpendicular unit vectors \mathbf{i}_{r} and \mathbf{i}_{φ} as shown in figure. Express \mathbf{i}_{r} and \mathbf{i}_{φ} as a combination of \mathbf{i} and \mathbf{j}.

Solution:

As the figure shows the two vectors \mathbf{i}_{r} and \mathbf{i}_{φ} can be resolved into two components along the x - and y-directions. From the figure we have:

$$
\mathbf{i}_{r}=i_{r} \cos \varphi \mathbf{i}+i_{r} \sin \varphi \mathbf{j} \underset{i_{r}=1}{\Rightarrow} \mathbf{i}_{r}=\cos \varphi \mathbf{i}+\sin \varphi \mathbf{j}
$$

$$
\mathbf{i}_{\varphi}=-i_{\varphi} \sin \varphi \mathbf{i}+i_{\varphi} \cos \varphi \mathbf{j} \underset{i_{\varphi}=1}{\Rightarrow} \mathbf{i}_{\varphi}=-\sin \varphi \mathbf{i}+\cos \varphi \mathbf{j}
$$

2. Show that $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}=\left|\begin{array}{ccc}A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \\ C_{x} & C_{y} & C_{z}\end{array}\right|$.

Solution:

$$
\begin{aligned}
& \mathbf{B} \times \mathbf{C}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|=\mathbf{i}\left|\begin{array}{cc}
B_{y} & B_{z} \\
C_{y} & C_{z}
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
B_{x} & B_{z} \\
C_{x} & C_{z}
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
B_{x} & B_{y} \\
C_{x} & C_{y}
\end{array}\right|= \\
& \mathbf{i}\left(B_{y} C_{z}-B_{z} C_{y}\right)-\mathbf{j}\left(B_{x} C_{z}-B_{z} C_{x}\right)+\mathbf{k}\left(B_{x} C_{y}-B_{y} C_{x}\right)
\end{aligned}
$$

So

$$
\begin{equation*}
\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=A_{x}\left(B_{y} C_{z}-B_{z} C_{y}\right)-A_{y}\left(B_{x} C_{z}-B_{z} C_{x}\right)+A_{z}\left(B_{x} C_{y}-B_{y} C_{x}\right) . \tag{1}
\end{equation*}
$$

We also have

$$
\begin{aligned}
& \left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|=A_{x}\left|\begin{array}{cc}
B_{y} & B_{z} \\
C_{y} & C_{z}
\end{array}\right|-A_{y}\left|\begin{array}{cc}
B_{x} & B_{z} \\
C_{x} & C_{z}
\end{array}\right|+A_{z}\left|\begin{array}{cc}
B_{x} & B_{y} \\
C_{x} & C_{y}
\end{array}\right|= \\
& A_{x}\left(B_{y} C_{z}-B_{z} C_{y}\right)-A_{y}\left(B_{x} C_{z}-B_{z} C_{x}\right)+A_{z}\left(B_{x} C_{y}-B_{y} C_{x}\right)
\end{aligned}
$$

Comparing (1) and (2) we have that:

$$
\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=\left|\begin{array}{ccc}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|
$$

3. Using the vectors $\mathbf{P}=\mathbf{i} \cos \theta+\mathbf{j} \sin \theta, \mathbf{Q}=\mathbf{i} \cos \phi-\mathbf{j} \sin \phi$, prove the familiar trigonometric identity

$$
\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi
$$

Solution:

From the figure we have that:

$$
\begin{equation*}
\mathbf{P} \cdot \mathbf{Q}=P Q \cos (\vartheta+\varphi)_{P=Q=1}^{=}=\cos (\vartheta+\varphi) . \tag{1}
\end{equation*}
$$

Also we have:

$$
\begin{equation*}
\mathbf{P} \cdot \mathbf{Q}=P \cos \vartheta Q \cos \varphi-P \sin \vartheta Q \cos \varphi \underset{P=Q=1}{=\cos \vartheta \cos \varphi-\sin \vartheta \cos \varphi .} \tag{2}
\end{equation*}
$$

From (1) and (2) we have:

$$
\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi
$$

4. Prove that two vectors A and B must have equal magnitudes if their sum $\mathbf{A}+\mathbf{B}$ is perpendicular (orthogonal) to their difference $\mathbf{A}-\mathbf{B}$.

Solution:

If the two vectors are perpendicular then their dot product must be zero.

$$
\begin{aligned}
& (\mathbf{A}+\mathbf{B}) \cdot(\mathbf{A}-\mathbf{B})=0 \Rightarrow \mathbf{A} \cdot \mathbf{A}-\mathbf{A} \cdot \mathbf{B}+\mathbf{B} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{B}=0 \underset{\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A}}{\Rightarrow} \\
& A^{2}-B^{2}=0 \Rightarrow A^{2}=B^{2} \Rightarrow A=B
\end{aligned}
$$

