1. The number of hydrogen "H" atoms present in 6.20 g of table sugar "C₁₂H₂₂O₁₁" is:

A) 2.4×10^{23}

B) 2.6×10^{23}

C) 2.7×10^{23}

D) 2.9×10^{23}

2. The mass (in g) of sodium "Na" present in 30.0 g of Na₂SO₄ is:

A) 12.2 B) 11.8 C) 10.5 D) 9.7

3. Copper "Cu" is usually added to gold "Au" to obtain a hard alloy suitable for making jewelry.
 A 24.0 g piece of such jewelry contains

5.70×10²² atom of Cu. The percentage by mass of gold in this jewelry is:

A) 72.72% B) 74.94% C) 76.85% D) 78.75%

4. The empirical formula of a certain pesticide which has the percentage by mass composition of 19.36% Ca, 34.26% Cl and 46.38% O is:

A) CaCl₂O₃

C) CaCl₂O₆

B) CaCl₂O₄

D) CaCl₃O₄

5. A metal "M" reacts with oxygen to give M₂O₃ metal oxide. If 9.6 g of oxygen combines with 10.8 g of this metal, the atomic mass (in a.m.u.) of this metal is:

A) 27

B) 45

C) 51

D) 55

6. GeF₃H is formed from GeH₄ and GeF₄ in the combination reaction:

 $GeH_4 + 3GeF_4 \rightarrow 4GeF_3H$

If the reaction yield is 92.6%, the numbers of moles of GeF₄ needed to produce 8.0 moles of GeF₃H are:

A) 6.18

B) 6.48

C) 6.78

D) 6.98

7. According to the following reaction: $2S + 3O_2 \rightarrow 2SO_3$

The maximum mass of SO₃ (in g) that can be produced by the reaction of 8.0 g of sulfur, S, with 10.0 g of oxygen "O₂" gas is:

A) 15.2

B) 17.6

C) 16.7

D) 18.4

8. The volume (in mL) of 0.251 M potassium iodide "KI" solution that contains 13.5 g KI is:

A) 385

B) 368

C) 346

D) 324

9. The molality "m" of a 25% by mass of glucose " $C_6H_{12}O_6$ " solution is:

A) 1.85

B) 1.75

C) 2.25

D) 2.15

10. The number of moles of NH₃ gas present in 50 L cylinder at 31.5°C and a pressure equals 20.0 atm is:

A) 40 B) 42 C) 45 D) 50

11. 18.39 g of Freon gas occupies 3 L at STP. Therefore, the molar mass of this gas is:

A) 142.6

B) 137.4

C) 132.8

D) 128.7

12. The density (in g.L⁻¹) of N_2O_5 gas at 33°C and 1.0 atm pressure is:

A) 4.3

B) 3.9

C) 3.6

D) 3.2

13. The volume (in L) of oxygen gas " O_2 " at 153°C and 0.820 atm that can be produced by the decomposition of 22.4 g of KClO₃ is: $2KClO_3 \rightarrow 2KCl + 3O_2$

A) 10.5 L B) 10.8 L C) 11.2 L D) 11.7 L

14. Two identical balloons are filled at the same temperature and pressure. One contains Argon gas "Ar" and the other contains Helium "He" gas. The argon gas leaks out of its balloon at a rate of 150 mL per hour. Therefore, the rate of leakage (in mL per hour) of helium gas of its balloon is:

A) 1497 B) 848 C) 474 D) 424

15. At STP, the average kinetic energy of the molecules of N₂ gas, O₂ gas and Cl₂ gas is:

- A) equal for the three gases.
- B) the greatest for the N₂ gas molecules.
- C) the greatest for the O₂ gas molecules.
- D) the greatest for the Cl₂ gas molecules.

Because T is the same, KE is the same.

