1. What is the mass (in grams) of 1.1×10^{22} atom of gold (Au)?

A) 2.2
B) 2.8
C) 3.6
D) 3.9

Solution:-
Atomic weight for $\mathrm{Au}=197 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}=\frac{N}{N_{A}}=\frac{1.1 \times 1022}{6.022 \times 1023}=0.018266 \mathrm{~mol}$
$\mathrm{m}=\mathrm{n} \times \mathrm{M}=0.018266 \times 197=3.598 \mathrm{~g}$

2. How many hydrogen atoms are in 5.37 g of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$?

A) 1.8×10^{23}
B) 1.8×10^{24}
C) 2.2×10^{23}
D) 2.6×10^{23}

Solution:-

$1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ contains 12 mol H
M for $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}=149 \mathrm{~g} / \mathrm{mol}$
$\mathrm{mol}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}=5.37 / 149=0.036 \mathrm{~mol}$
$\mathrm{mol} \mathrm{H}=0.036 \times 12=0.5326 \mathrm{~mol}$
No. of H atoms $=\mathrm{n} \times \mathrm{N}_{\mathrm{A}}$

$$
=0.5326 \times 6.022 \times 10^{23}=2.6 \times 10^{23} \text { atom }
$$

3. How many moles are in 1.0 kg of pure table sugar $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$?

$\begin{array}{llll}\text { A) } 2.92 & \text { B) } \mathbf{3 . 3 2} & \text { C) } \mathbf{3 . 6 4} & \text { D) } 4.16\end{array}$

Solution:-
M for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}=342 \mathrm{~g} / \mathrm{mol}$
$\mathrm{n}=\mathrm{m} / \mathrm{M}=1000 / 342=2.92 \mathrm{~mol}$
4. The percentage by mass of nitrogen in $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}$ is:
A) 7.36%
B) 10.64%
C) 8.54%
D) 9.75%

Solution:-
M for $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}=395 \mathrm{~g} / \mathrm{mol}$
$\% \mathrm{~N}$ in $\mathrm{Bi}\left(\mathrm{NO}_{3}\right)_{3}=\frac{3 \times 14}{395} \times 100 \%=10.63 \%$
5. The combustion of 1.031 g of an organic compound that contains only carbon, hydrogen and oxygen produced $2.265{\mathrm{~g} \text { of } \mathrm{CO}_{2} \text { and } 1.236}^{2}$ g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of this compound?
A) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
B) $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}$
C) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
D) $\mathrm{CH}_{2} \mathrm{O}$

Solution:-
Gram C $=\frac{2.265}{44} \times 12=0.6177 \mathrm{~g}$
Gram $\mathrm{H}=\frac{1.236}{18} x 2 \times 1=0.1373 \mathrm{~g}$
Gram O $=1.031-(0.6177+0.1373)=0.276 \mathrm{~g}$
$\mathrm{mol} C=0.6177 / 12=0.0515 \mathrm{~mol}$
$\mathrm{mol} \mathrm{H}=0.1373 / 1=0.1373 \mathrm{~mol}$
$\mathrm{mol} \mathrm{O}=0.276 / 16=0.01725 \mathrm{~mol}$
Divide by 0.01725
C:H:O 3:8:1
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
6. An element " X " combines with oxygen to form a compound with formula XO_{2}. If 6.7 g of this element combines with 3.9 g of oxygen, what is the atomic mass of this element (in a.m.u.)?
A) 55
B) 40
C) 65
D) 48

Solution:-

$\mathrm{X}+\mathrm{O}_{2} \rightarrow \mathrm{XO}_{2}$
mol of $\mathrm{O}_{2}=3.9 / 32=0.122 \mathrm{~mol}$
$\mathrm{molX}=\mathrm{mol} \mathrm{O}_{2}$
Atomic mass of $X=6.7 / 0.122=55$
7. What is the theoretically yield (in grams) of copper Cu when 18.1 g of NH_{3} gas and 90.4 g solid CuO were allowed to react according to: $2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}(\mathrm{s}) \rightarrow 3 \mathrm{Cu}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A) 48.7
B) 63.6
C) 68.5
D) 72.2

Solution:-
$\mathrm{mol} \mathrm{NH}_{3}=18.1 / 17=1.065 \mathrm{~mol}$
$\mathrm{mol} \mathrm{CuO}=90.4 / 79.55=1.136 \mathrm{~mol}$
Stoichiometric ratio
$\mathrm{NH}_{3} \mathrm{~mol}=1.065 / 2=0.532$
$\mathrm{CuO} \mathrm{mol}=1.136 / 3=0.379$
CuO is the limiting reactant
So, mol Cu/3 = mol CuO/3
mol of $\mathrm{Cu}=1.136$
mass $\mathrm{Cu}=1.136 \times 63.55=72.2 \mathrm{~g}$
8. What is the percentage yield of lead (Pb) if 50.00 kg of PbO are reduced by heating with excess carbon and 40.75 kg of lead are produced according to: $\mathrm{PbO}(\mathrm{s})+\mathrm{C}(\mathrm{s}) \rightarrow \mathrm{Pb}(\mathrm{L})+\mathrm{CO}(\mathrm{g})$

A) $\mathbf{7 5 . 8 8 \%}$
B) 87.79%
C) 90.32%
D) 94.65%

Solution:-
$\mathrm{M} \mathrm{PbO}=223.2 \mathrm{~g} / \mathrm{mol}$
$\mathrm{mol} \mathrm{PbO}=50000 / 223.2=224 \mathrm{~mol}$
$\mathrm{mol} \mathrm{PbO}=\mathrm{mol} \mathrm{Pb}$ produced
mass $\mathrm{Pb}=224 \times 207.2=46412.8 \mathrm{~g}$
$\% y$ ield $=\frac{40750}{46412.8} \times 100 \%=87.799 \%$
9. How many milliliter of water must be added to a stock solution of $6.0 \mathrm{M} \mathrm{HNO}_{3}$ in order to prepare $0.90 \mathrm{~L}^{2}$ of $0.5 \mathrm{M} \mathrm{HNO}_{3}$ by dilution?
A) 825
B) $\mathbf{8 5 0}$
C) 780
D) 800

Solution:-
$M_{1} \times V_{1}=M_{2} \times V_{2}$
$6 \times V_{1}=0.5 \times 0.9$
$\mathrm{V}_{1}=0.5 \times 0.9 / 6=0.075 \mathrm{~L}$
$\mathrm{V}_{\mathrm{H} 2 \mathrm{O}}=0.9-0.075=0.825 \mathrm{~L}=825 \mathrm{~mL}$

10. What is the percent $\mathrm{H}_{2} \mathrm{SO}_{4}$ by mass in a 6.0 M of

 $1.0 \mathrm{~L} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution that has a density of $1.34 \mathrm{~g} / \mathrm{mL}$?A) $\mathbf{2 7 . 8 3 \%}$
B) $\mathbf{3 2 . 7 4 \%}$
C) 43.92%
D) $\mathbf{7 8 . 2 5 \%}$

Solution:$\mathrm{mol} \mathrm{H}_{2} \mathrm{SO}_{4}=6 \times 1=6 \mathrm{~mol}$
mass $\mathrm{H}_{2} \mathrm{SO}_{4}=6 \times 98=588 \mathrm{~g}$
mass of solution $=1000 \times 1.34=1340 \mathrm{~g}$
$\% \mathrm{H}_{2} \mathrm{SO}_{4}=\frac{588}{1340} \times 100=43.88 \%$
11. A sample of Cl_{2} gas occupies a volume of 5.0 L at $25^{\circ} \mathrm{C}$ and 15.0 atm . What volume (in L) will this sample occupy at STP?
A) 68.7
B) 52.8
C) 40.6
D) 28.4

Solution:-
STP; $0^{\circ} \mathrm{C}$ (273 K) and 1 atm
$P_{1} V_{1} / T_{1}=P_{2} V_{2} / T_{2}$
$V_{2}=15 \times 5 \times 273 / 298 \times 1=68.7 \mathrm{~L}$
12. A tennis ball has an internal volume of 145 mL and contains 0.366 g of N_{2} gas. What will be the pressure (in atm) inside the ball at $25^{\circ} \mathrm{C}$?
A) 1.8
B) $\mathbf{2 . 0}$
C) 2.2
D) 2.4

Solution:-
P = nRT / V
$\mathrm{mol} \mathrm{N}_{2}=0.366 / 28=0.0131 \mathrm{~mol}$
$P=0.0131 \times 0.0821 \times 298 / 0.145=2.2 \mathrm{~atm}$
13. What volume of oxygen gas at STP would be needed to react completely with 20.1 g of aluminum (Al) according to: $4 \mathrm{Al}(\mathrm{s})+\mathbf{3 \mathrm { O } _ { 2 }}(\mathrm{g}) \rightarrow \mathbf{2 \mathrm { Al } _ { 2 } \mathrm { O } _ { 3 } (\mathrm { s })}$

$\begin{array}{llll}\text { A) } 10.8 \mathrm{~L} & \text { B) } 12.5 \mathrm{~L} & \text { C) } 14.3 \mathrm{~L} & \text { D) } 15.5 \mathrm{~L}\end{array}$

Solution:-
mol AI $=20.1 / 26.98=0.745 \mathrm{~mol}$
$\mathrm{mol} \mathrm{Al} / 4=\mathrm{mol} \mathrm{O}_{2} / 3$
$\mathrm{mol} \mathrm{O}_{2}=0.745 \times 3 / 4=0.559 \mathrm{~mol}$
$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{V}=0.559 \times 0.08206 \times 273 / 1=12.5 \mathrm{~L}$
14. What is the molar mass (in g. mol^{-1}) of a certain gas if its density is $1.57 \mathrm{~g} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$ and 1.2 atm?
A) 71
B) 44
C) 32
D) $\mathbf{2 8}$

Solution:-

$$
\begin{aligned}
& \mathcal{M}=\frac{d R T}{P} \\
= & \frac{1.57 \times 0.0821 \times 298}{1.2}=32 \mathrm{~L}
\end{aligned}
$$

15. What is the root-mean-square speed of a neon Ne atom (in m / s) at $27^{\circ} \mathrm{C}$?

A) 450
B) 498
C) 585
D) 609

Solution:-

$$
u=\sqrt{\frac{3 R T}{M}}
$$

$=\sqrt{\frac{3 x 8.314 \times 300}{0.02018}}=608.9 \mathrm{~m} / \mathrm{s}$

412

$$
\stackrel{\text { Thankyou! }}{\stackrel{\Delta}{\square}}
$$

$$
\stackrel{A}{\square}
$$

