1. Which of the following is an SI derived unit:

- A) Liter "L" for volume
- B) Pascal "Pa" for pressure
- C) Kilogram "Kg" for quantity
- D) Kilometer per hour "Km/h" for speed

2. The mole is:

- A) Avogadro's number
- B) The quantity of matter containing unit mass of its particles
- C) The quantity of matter containing Avogadro's number of its particles
- D) The mass of matter containing Avogadro's number of its particles

3. The following reaction is a: $C_6H_6(I) + 15/2O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(I)$

- A) Combustion reaction
- **B)** Combination reaction
- C) Combustion and a combination reaction
- **D)** Decomposition reaction

4. Number of moles of a solute in 1 dm³ of a solution is the solution:

- A) Density
- **B) Molarity**
- C) Capacity
- D) Quantity

5. Number of hydrogen atoms in 11.22 g of glucose "C₆H₁₂O₆" is:

A) 4.50 X 10 ²⁶
B) 4.50 X 10 ²³
C) 4.50 X 10 ²⁵
D) 4.50 X 10 ²⁴

6. The number of grams of iron oxide "Fe₂O₃" that contains 0.7 mol of iron "Fe" is"

- A) 55.9
- B) 9.55
- C) 5.59
- D) 95.5

7. If the molar mass of a potassium "K" compound is 368.43 g mol ⁻¹ and the potassium composition percent is 42.45%, the number of potassium atoms in each molecule is:

A) 5
B) 2
C) 4
D) 3

8. If the main compound of the ore chalopyrite is 34.62% by mass cupper "Cu", 30.43% by mass iron "Fe" and the rest is sulfur "S", the empirical formula of this compound is:

A) CuFeS₃
B) Cu₂Fe₂S₂
C) CuFe₂S₂
D) CuFeS₂

9. The concentration, in mol/L, of 750.0 mL solution of 149.4 g of potassium iodide "KI" in is:

A) 0.12
B) 1.2
C) 2.1
D) 0.21

10. What is the final concentration, in mol/L, when 25.0 mL of stock solution of CuSO₄ is diluted to 500.0 mL if its initial concentration is 5.0 mol/L?

A) 0.25
B) 0.52
C) 2.5
D) 0.025

11. If a solution of NaNO₃(s) in water has a concentration of 27.5% by mass of, the mole fraction of the solute is:

A) 0.057
B) 0.507
C) 0.075
D) 0.705

12. At constant temperature (T), volume (V) of a gas: will...?... when (P) is decreased at constant (n), and will ...?...when (n) is decreased at constant (p):

- A) increase...increase
- B) increase...decrease
- C) decrease...increase
- D) decrease...decrease

13. Which of the following hypothesis of the kinetic molecular theory is behind gases deviation from their ideal gas law?

- I. particles' volumes are negligible
- II. particles' motions are random
- III. particles' kinetic energy is constant at constant temperature
- IV. particles' attractive forces are negligible
- V. particles' collision are elastic
- A) I and II
- B) II and IV
- C) I and IV
- D) III and V

14. From the following diagram relating (PV/RT) of 1 mole of $CO_2(g)$ with its (P) at different temperature, it appears that $CO_2(g)$ as a real gas:

A) Deviates less from ideal gas law at high T B) Deviates more from ideal gas law at high T C) Obeys ideal gas law at all temperature D) Deviates from ideals gas law at all temperatures

15. Pressure, in atm, exerted by 76 g of F₂(g) in a 1.50 liter vessel at -37°C is:

- A) 52.38
- B) 25.83
- C) 23.58
- D) 35.28

PV = nRT

16. The density, in g/L, of Cl₂(g) at STP is:

- A) 3.163
- B) 6.313
- C) 1.363
- D) 3.631

17. If a sample of H₂(g), collected over water
 (P_{vap,H2O,24C} = 22.4 torr), occupied 30.0 mL at 24 °C and a total pressure of 736 torr, the volume that H₂(g) occupies if it was dried at STP, in mL, is:

A) 32.4 $P_{\text{total}} = P_{\text{gas}} + P_{\text{H}_2\text{O}}$ B) 21.6 C) 36.8 $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ D) 25.9 18. If He(g) effuses through a porous barrier at a rate of 4.0 mol/min, the rate of effusion of O₂(g), in mol/min, through the same barrier at the same temperature and pressure will be:

A) 0.20
B) 0.50
C) 1.41
D) 8.0

$$\frac{r_1}{r_2} = \sqrt{\frac{\mathcal{M}_2}{\mathcal{M}_1}}$$

19. If the root-mean-square speed (rms), u, of a gas is 525.353 m/s at 310 K, the gas could be:

A) O_2 B) CO or N_2 C) NO or N_2 D) HCl

20. If the density of Cl₂(g) at room temperature is 3.2 g/L, its pressure, in atm, is:

- A) 1.1
- B) 2.1
- C) 0.11
- D) 0.21

 I. Sodium hydroxide reacts with phosphoric acid (M_{H3PO4} = 98g/mol) to form sodium phosphate (M_{Na3PO3} = 163.94g/mol) and water: 3NaOH(aq) + H₃PO₄(aq) → Na₃PO₄(aq) + 3H₂O(I)
 If 0.89mol of NaOH is reacted with 0.49mol of H₃PO₄:

(a) Which reactant is the limiting reactant
 (b) Calculate the theoretical yield of Na₃PO₄
 (c) If the actual yield of Na₃PO₄ is 0.225mol, calculate its yield percentage

II. If a 10.0 L cylinder contains 20.0 mol of He(g). Calculate the temperature at which its pressure becomes 120 atm:

(a) If the gas is ideal.

$$PV = nRT$$

(b) If the gas isn't ideal (a=0.0341 L² atm mol², b=0.0237 L mol⁻¹).

$$(P + \frac{n^2 a}{V^2}) (V - nb) = nRT$$

