Physical properties and detection of normal constituents of urine

-Urinary system:

• The urinary system works with the lungs, skin and intestines to maintain the balance of chemicals and water in the body.

• The kidneys form urine, which passes through the ureters to the bladder for storage prior to excretion.

• Waste products are excreted selectively, electrolyte levels are controlled and pH (acid-base balance) is maintained by excretion of hydrogen ions.

• The composition of urine reflects **exchange** of substance between the nephron and blood in the renal capillaries.

-Urine Formation:

- There are three processes involved in the formation of urine:
- 1. Filtration.
- 2. Selective reabsorption.
- 3. Secretion.

The three processes of urine formation

One: Filtration: (non-selective filtration occurs).

- This takes place through the semipermeable membrane of glomerulus and glomerular capsule (Bowman's capsule).
- Water and small molecules move from the glomerulus to the inside of the glomerular capsule.
- Molecules which have molecular weight <u>more than</u> 70,000 Dalton can not pass the glomerulus.

• Inside the glomerular capsule now contains glomerular filtrate which is very similar in composition of plasma except of plasma proteins and blood cells.

Two: Selective reabsorption:

• **Reabsorption** is the movement of water and some solutes from the tubular fluid back into the blood.

• As molecules and ions are passively and actively reabsorbed from the nephron into the blood of the peritubular capillary network.

proximal convoluted tubule

• Nutrients such as glucose and amino acids **return** to the peritubular capillaries almost exclusively at the proximal convoluted tubule.

• Every substance has a **maximum rate of transport.**

Three: Secretion:

• Is a second way by which substances are <u>removed from</u> <u>blood and added to the tubular fluid</u>.

• Is a process in which the renal tubule extracts chemicals from the capillary blood and secretes them into the <u>tubular</u> <u>fluid.</u>

• Hydrogen ions (H+), creatinine, and drugs such as penicillin are some of the substances moved by active transport from blood into the kidney tubule.

• Tubular secretion occurs along the length of the distal tubule.

• In the end, urine contains:

1-substances that have undergone glomerular filtration (step one) but have not been reabsorbed (step two).

2-substances that have undergone tubular secretion (step three).

Glomerular filtrate VS Urine

Constituent	Daily Excretion			
	Glomerular Filtrate	Urine		
Water	130,000 ml	1500 ml		
Sodium	20,000 mmol	150 ml		
Albumin	4 g (60 μmol)	0.04 g (6 μmol)		
Urea	900 mmol	400 mmol		

-Composition of Normal Urine:

- Water 96%
- Urea 2%
- Uric acid
- Creatinine
- Ammonia
- Sodium
- Potassium

2%

- Chloride
- Phosphate
- Sulphate
- Oxalate

-Urinalysis:

- Urinalysis (UA) is one of the most frequently ordered tests.
- Two unique characteristics of urine specimens :
- **1-** Urine is readily available and easily collected specimen.
- **2-** Urine contains information about many of the body's major metabolic functions, and this information can be obtained by simple laboratory tests.

-Laboratory testing for routine urinalysis (types of testing):

- First, the physical characteristics of the urine are noted and recorded.
- Second, a series of **chemical tests** is run. A chemically impregnated dipstick can be used for many of these tests.
- Third, the urine sediment is examined under **microscopic** to identify components.

Patient Name:									
Age:		_ □	M	⊒ F					
Physician's Name:									
Collection Date:			Test Date:			Tester's Initials:			
Physical Characteristics:									
Color: 🗅 colorless	s 🖵 yello	ow 🗖 a	amber	other		orange	green	☐ red	
Appearance:	🖵 clea	ır 💷 l	nazy	☐ cloud	/ 🗆	turbid			
Chemical Mea	sureme	nts: (c	ircle or	ne)					
urobilinogen (mg/dL)	normal	2		4	8				
glucose (mg/dL)	neg	50	10	00 2	250	500	1000		
ketone (mg/dL)	neg	trace/5	+/′	15 ++/	40	+++/80	++++/160		
bilirubin	neg			+	++	+++			
protein (mg/dL)	neg	trace		+/	/30	++/100	+++/300	++++/2000	
nitrite	neg	neg pos (any pink color is considered positive)							
leukocytes	neg	trace		+	++	+++			
blood	neg	trace Non-l	modera Hemolyzed	te tra	ace Hem	+/small nolyzed	++/mod	+++/large	
pH	5	6	6	.5	7	8	9		
specific gravity 1.000	1.005	1.010	1.01	15 1.0	20	1.025	1.030		
Microscopic Examination:									
WBC	/HPF	Crysta	ls			Parasite	s		
RBC	/HPF	Bacter	ia		_	Sperma	tozoa		
Casts	/LPF	Yeast_			_	Artifacts	3		
Epithelial Cells		/HPF	:			Other_			

Physical characteristics

Chemical tests

Microscopic examination

Urine dipstick / Urine test strips:

- The test strips consist of a ribbon made of absorbent microfiber cellulose pads attached to it.
- Each pad contains the dried **reagents** needed for a specific test that react with the compounds present in urine producing a characteristic colour.
- The <u>depth of color produced relates</u> to the <u>concentration</u> of the substance in the urine.
- It provides quick **Semi-quantitative determinations** of pH, protein, glucose, ketones, bilirubin, hemoglobin (blood), nitrite, leukocyte, urobilinogen, and specific gravity.
- Color changes then matched to the <u>control</u> chart at the correct time after each stick is dipped into the urine specimen.

Urine dipstick / Urine test strips

Simple Examination of the Urine

Organic

Uric acid, Creatinine

Physical Examination

Volume, Specific gravity, Color, Appearance, odor, pH

Chemical Examination

Chloride, Phosphate, Bicarbonate, Sulphate

Inorganic

Physical Examinations: 1- Volume:

- The daily output of urine on an average diet and normal fluid intake is between 800-2500 ml with an average of 1500 ml/day.
- Effected by: 1) Physiological factors.
 2) pathological factors.

Polyurea

- More than 2500 ml/day.
- Diabetes mellitus.

Chronic renal insufficiency.

Oligurea

- Below 500 ml /day.
- In case of deficient intake of water or excessive loss of fluids by other routs like haemorrhage or as diarrhea and vomting.

Anurea

- Below 100 ml /day.
- Stones or tumors in the urinary tract can also cause it by creating an obstruction to urinary flow.

2-Colour:

- Normally, Urine is amber in color due to the presence of <u>urobilin</u> (urochrome).
- Pale urine has a **low** specific gravity, a dark line has a **high** specific gravity (a **direct** relationship between the colour and the specific gravity).
- Coloured urines occur in certain diseases or metabolic disorders, and after the administration of many drugs.

The more that your body is dehydrated, the more the urine is dark

3-Appearance:

- Normal urine is clear.
- Urine clarity is typically classified as: clear, mildly cloudy, cloudy, or turbid.
- → Note: cloudy or turbid urine can indicate dehydration, urinary tract infection or presence of RBCs, WBCs, epithelial cells or bacteria.

4- Odour:

- Normally Urine smells **aromatic** due to the presence of volatile organic acids.
- The urine of patients with diabetes mellitus may have a fruity (acetone) odor because of ketosis.
- Urine which is infected with Gram-negative organisms often has a distinctive unpleasant smell.
- Certain drugs impart a typical odour.

5- pH:

• On a normal mixed diet the urine is **usually acid**, generally varying in pH between **5.5 and 8.0**, with a **mean of 6 in 24 hours**.

- Acidic Urine:

• Diabetic ketosis, urinary tract infection, diarrhea and starvation.

- Alkaline Urine:

- A vegetarian diet which causes a tendency to alkalosis.
- It may also be grossly increased by bacterial infection of the urinary tract.

6- Specific gravity (SG):

- Specific gravity is the ratio of the density of a substance to the density (mass of the same unit volume) of a reference substance.
- The normal specific gravity (correctly called relative density) of a pooled 24 hour urine sample is between 1.010 and 1.025.
- There are <u>direct relationship</u> between concentration of substance in urine (Concentration of urine) and SG.
- → The concentration of urine is highest in the a morning specimen (overnight urine) and is lowest in a specimen passed an hour after much fluid has been taken.

Practical Part

-Objectives:

- 1. Simple examination of Urine.
- 2. To detect some of the normal <u>organic</u> constituents of urine (Qualitative).
- 3. To detect some of the normal <u>inorganic</u> ions present in urine (Qualitative).
- Note: All the examination in 24 hour collection of urine.

Method of Physical Examinations:

1-Volume: Measure the volume of the 24 hour collection of normal urine.

2-Odour: State whether it is normal urine like ammonical, or not.

3-Colour: Visually examine its colour.

4- Appearance: State whether it is clear, cloudy or whether deposits or precipitates are present.

5- pH: Record the pH of the sample by test strips.

6-Specific gravity: Record the specific gravity of the sample by test strips

Principle: Each test based on the chemical properties of the substance + test strip.

Organic Chemical Examinations:

A. Uric acid: Uric acid is the end product of <u>purine</u> metabolism.

-Method:

- 1. To 2 ml of **Urine D** add 1 ml of Benedict reagent.
- 2. Then heated in a boiling water bath for three minutes.
- 3. Changes to the white precipitate indicates the presence of uric acid.

B. Creatinine: waste product of <u>muscle</u> metabolism.

-Method:

- 1. To about 5 ml of **Urine A** add a few drops of a saturated solution of picric acid.
- 2. On rendering the solution alkaline with a few drops of 10% sodium hydroxide solution, a deep red color or orange due to creatinine picrate appears.

Inorganic Chemical Examinations

A. Chloride:

-Method:

Add 5 ml of **Urine B** +5 drops of 2N nitric acid+ 2N silver nitrate solution

→ A white precipitate of silver chloride is formed (Silver chloride is precipitated in the presence of nitric acid and silver nitrate).

B. Bicarbonate:

-Method:

Add 4 drops of concentrate hydrochloric +5 ml of **Urine A**.

→ A <u>slight effervescence</u> occurs due to CO2 evolution.

C. Sulphate:

-Method:

To Acidify add 10 ml of Urine A with 1ml dilute hydrochloric acid + 4 drops of 5% barium chloride solution

→ A white precipitate sulphate is precipitated as of barium sulphate is formed.

D. Ammonia:

-Method:

Add 1 ml of 10% sodium hydroxide solution +5 ml or **Urine B**, then heat in water bath.

The evolved ammonia may be detected its occur in confirmed by turning the moist red litmus paper to blue.

Summery:

Physical examination					
The normal constituent of 24 hour urine					
Volume	800-2500 ml with an average of 1500 ml				
Color	Amber in color				
Appearance	Clear				
Odour	Urine like				
pН	5.5 - 8.0, with a mean of 6				
Specific gravity	1.010 - 1.025				
Chemical examination					
Chemical	Positive result				
Uric acid	White precipitate				
Creatinine	Deep orange color				
Chloride	White precipitate				
Bicarbonate	CO2 bubble appeared				
Sulphate	White precipitate				
Ammonia	Litmus paper turns to blue				