King Saud University

College of Engineering

IE – 341: "Human Factors Engineering"

Fall – 2016 (First Semester 1437-1438)

Chapter 1. Introduction

Prepared by: Ahmed M. El-Sherbeeny, PhD

Human Factors: Overview

- Successful design entails what man:
 - Needs
 - Wants (desires)
 - Can use
- Human factors investigated by designers:
 - Anthropometry (Human physical size, limitations)
 - Physiology: human body,
 - Reactions (hearing, seeing, touching, etc.)
 - Functions
 - Limitations
 - Capabilities
 - Ergonomics ("doing" vs. anthropometry: "being")
 - dynamic interaction of operator and machine
 - Psychology: influence of mental conditions
 - Others: social, climate, religion, etc.

Cont. Human Factors: Overview

- Objectives of Human Factors (HF):
 - o Increase work efficiency
 - Increase effectiveness of work
 - Increase convenience and ease of use of machines
 - Increase productivity
 - Decrease errors
 - o Study influence of design on people
 - o Change designs to suit human needs, limitations
 - o Increase human values:
 - Increase safety
 - Increase comfort
 - Increase job satisfaction
 - Decrease fatigue and stress
 - Increase quality of life

Human factors, definitions

• Definition 1:

- o Systematic application of information about human:
 - Capabilities, limitations, and characteristics to the design of:
 - objects and procedures that people use,
 - and the environment in which they use them
- Definition 2:
 - o HF discovers and applies information about human:
 - Behavior, abilities, limitations, other characteristics to the design of:
 - tools, machines, systems, jobs, tasks, environments for:
 - productive, safe, comfortable, effective human use

Human Factors: Characteristics

- HF involves study of:
 - o Human response to environment
 - o Response as a basis for design, improvements
- Characteristics of HF:
 - o Machines must be built to serve humans (not opp.)
 - o Design must take human differences into account
 - o Designs influence humans
 - o Design process must include data and calculations
 - o Human data must be tested scientifically
 - o Humans and machines are related
 - o NOT just check lists and guidelines
 - o NOT: using oneself as model for design
 - o NOT just common sense

Human Factors: History (US(

- Early 1900's: Frank and Lilian Gilbreth:
 - Design of workstations for disabled (e.g. surgery)
- After WWII (1945): HF profession was born
- 1949: HF books, publications, conferences, e.g.:
 - HF in Engineering Design, 1949
 - HF Society (largest HF professional group), 1957
- 1960-80: emphasis moved from military to industry:
 - Pharmaceuticals, computers, cars, etc.
- 1980-90: HF in PC revolution
 - "ergonomically-designed" equipment, software
 - HF in the office
 - Disasters caused due to HF considerations
 - e.g. Chernobyl, Soviet Union, 1986
 - HF in forensics (injury litigations, defective designs)
- >1990's:
 - Medical devices, devices for elderly
 - OSHA ergonomic regulations

Human Factors: Profession

- HF Society members:
 - o Psychology: 45.1%
 - o Engineering: 19.1%
- People performing HF work (in general)
 - o Business (private): 74%
 - o Government: 15%
 - o Academia: 10%

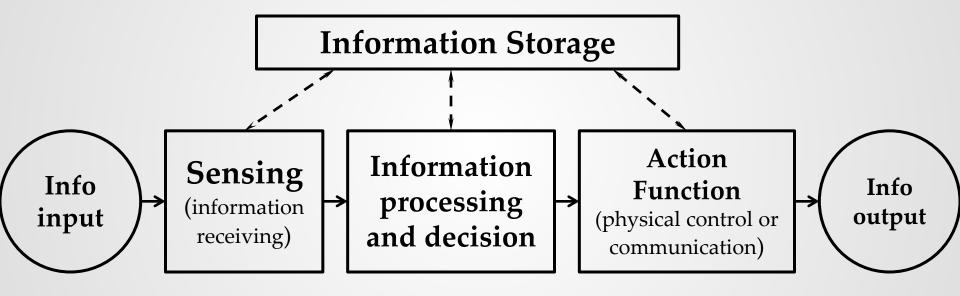
Human-Machine Systems

- System (Defⁿ):
 - o "Entity that exists to carry out some purpose"
 - o Components: humans, machines, other entities
 - Components must integrate to achieve purpose (i.e. not possible by independent components):
 - Find, understand, and analyze purpose
 - Design system parts
 - System must meet purpose
- Machine (Defⁿ):
 - Physical object, device, equipment, or facilityused to perform an activity
- Human-Machine system (Defⁿ):
 - \circ ≥1 Human + ≥1 physical component
 - Interaction using given input/command
 - o Result: desired output
 - o e.g. man + nail + hammer to hang picture on wall
 - See Figure 1-1, pp. 15 (Sanders and McCormick)

Cont. Human-Machine Systems

- Types of HM systems:
 - o Manual systems:
 - operator + hand tools + physical energy
 - o Mechanical systems (AKA semiautomatic systems):
 - operator (control) + integrated physical parts e.g. powered machine tools
 - Automated systems:
 - little or no human intervention (e.g. Robot)
 - Human: installs programs, reprograms, maintains, etc.

Consider broomstick vs vacuum vs Roomba™


HM System Characteristics

- Systems are purposive
 - o Systems have ≥ 1 objective
- Systems can be hierarchical
 - o Systems may have subsystem levels (1, 2, etc.)
- Systems operate in environment (i.e. inside boundary)
 - o Immediate (e.g. chair)
 - o Intermediate (e.g. office)
 - o General (e.g. city)

• Components serve functions

- o Sensing (i.e. receiving information; e.g. speedometer)
- o Information storage (i.e. memory; e.g. disk, CD, flash)
- Information processing and decision
- Action functions (output)
 - Physical control (i.e. movement, handling)
 - Communication action (e.g. signal, voice)

HM System Characteristics

Cont. HM System Characteristics

- Components interact
 - o components work together to achieve a goal
 - o components are at lowest level of analysis
- Systems, subsystems, components have I/O
 - o I: input(s)
 - o O: output(s)
 - o O's of 1 system: can be I's to another system
 - o l's:
 - Physical (materials)
 - Mechanical forces
 - Information

Types of HM Systems

- Closed-loop systems
 - o Require continuous control
 - o Require continuous feedback (e.g. errors, updates, etc.)
 - o e.g. car operation
- Open-loop systems
 - o Need no further control (e.g. car cruise-control)
 - Feedback causes improved system operation

System Reliability

- Defn: "probability of successful operation"
- Measure #1:
 - o success ratio
 - o e.g. ATM gives correct cash: 9999 times out of 10,000 \Rightarrow Rel. = 0.9999
 - o Usually expressed to 4 d.p.
- Measure # 2:
 - o mean time to failure (MTF)
 - o i.e. # of times system/human performs successfully (before failure)
 - o Used in continuous activity

System Rel.: Components in Series

- Successful operation of system ⇒ Successful operation of ALL components (i.e. machines, humans, etc.)
- Conditions:
 - Failure of 1 component \Rightarrow failure of complete system!
 - o Failures occur independently of each other
- Rel. of system = Product of Rel. of all components
- e.g. System has 100 components
 - o components all connected in series
 - o Rel. of each component = 99%
 - o ⇒ Rel. of system = 0.365 (why?)
 - o i.e. system will only work successfully: 365 out of 1,000 times!
 - o Conclusions:
 - more components \Rightarrow less Rel.
 - Max. system Rel. = Rel. of least reliable component
 - least Rel. component is usually human component (weakest link)
 - In reality, system ReI. \ll least ReI. component

System Rel: Components in Parallel

- ≥2 components perform same functions
 - o AKA: backup redundancy (in case of failure)
- System failure \Rightarrow failure of ALL components
- e.g. System has 4 components
 - components connected in //
 - o Rel. of each = 0.7
 - \circ ⇒ System Rel. =
 - $1 (1 \text{Rel}_{c1})(1 \text{Rel}_{c2})(1 \text{Rel}_{c3})(1 \text{Rel}_{c4}) = 0.992$
 - o Conclusions
 - more components in // \Rightarrow higher Rel.
 - o Note, Rel.↓ with time (e.g. 10-year old car vs. new)