Concepts of Programming Languages

Lecture 14 - Functions

Spring 2014

Patrick Donnelly
Montana State University

IS

It is better to have 100 functions operate on one data structure
than 10 functions on 10 data structures.

Alan Perlis
Epigrams on Programming, 1982

{* MONTANA
STATE UNIVERSITY 2 /45

Lecture Objectives

v

v

>

vV vy VvYyy

v v

v

pass
pass
pass
pass
pass

by
by
by
by
by

Review subroutine terminology

Understand the 5 Passing mechanisms:

value

result
value-result
reference
name

Practice passing with an example walkthrough
Activation records

Recursive functions

{* MONTANA
STATE UNIVERSITY 3/45

Procedures

Definition

Procedures are collection of statements that define parameterized
computations.

Procedures are non-value-returning functions:
» “procedures” in Ada,
» “subroutines” in Fortran,
» “void functions/methods” in C/C++/Java

Procedures are often called from a separate statement:

strcpy(sl, s2);

{* MONTANA
STATE UNIVERSITY /a5

Definition

Functions structurally resemble procedures but are semantically
modeled on mathematical functions.

Value-returning functions:

» known as “non-void functions/methods’ 'in C/C++/Java.

v

called from within an expression.

v

they are expected to produce no side effects, but in practice,
program functions have side effects.

x=(bx*xb-sqrt(4d xa*xc¢c)) /2 % a

{* MONTANA
STATE UNIVERSITY 5 /45

Terminology Review

int x ;= 0;

void foo(int y){
X = x + 1;
y ==y + 4;
print(x);

}

foo(x);
print(x);

{* MONTANA
STATE UNIVERSITY 6 /45

CWOWOo~NOOO A WN R

—_

Terminology Review

int x ;= 0;

void foo(int y){
X = x + 1;
y =y + 4
print(x);

}

foo(x);
print(x);

O OO ~NOO B WN -

[y

What is line 37

{* MONTANA
STATE UNIVERSITY

6 /45

Terminology Review

int x ;= 0;

void foo(int y){
X = x + 1;
y =y + 4
print(x);

}

foo(x);
print(x);

O OO ~NOO B WN -

[y

What is line 37

function declaration

{* MONTANA
STATE UNIVERSITY

6 /45

Terminology Review

int x ;= 0;

void foo(int y){
X = x + 1;
y =y + 4
print(x);

}

foo(x);
print(x);

O OO ~NOO B WN -

[y

What are lines 4-77

{* MONTANA
STATE UNIVERSITY

7 /45

Terminology Review

int x ;= 0;

void foo(int y){
X = x + 1;
y =y + 4
print(x);

}

foo(x);
print(x);

O OO ~NOO B WN -

[y

What are lines 4-77

function body

{* MONTANA
STATE UNIVERSITY

7 /45

Terminology Review

int x ;= 0;

void foo(int y){
X = x + 1;
y =y + 4
print(x);

}

foo(x);
print(x);

O OO ~NOO B WN -

[y

What is line 97

{* MONTANA
STATE UNIVERSITY

8/45

Terminology Review

int x ;= 0;

void foo(int y){
X = x + 1;
y =y + 4
print(x);

}

foo(x);
print(x);

O OO ~NOO B WN -

[y

What is line 97

function call

{* MONTANA
STATE UNIVERSITY

8/45

Arguments and Parameters

Definition

An argument is an expression that appears in a function call.

Definition

A parameter is an identifier that appears in a function declaration.

{* MONTANA
STATE UNIVERSITY 9/45

Arguments and Parameters

1l int x := 0;
2 The function declaration foo
3| void foo(int y){ h £
A < = x 4+ 1: as parameter y.
5 y =y + 4;
6 print (x);
71}
) The function calls foo and
9| foo(x); print have argument x.
10| print (x);

{* MONTANA
STATE UNIVERSITY
10/ 45

Parameter-Argument Matching

Usually by number and by position.
i.e., any call to A must have two arguments, and
they must match the corresponding parameters’ types.

{* MONTANA
STATE UNIVERSITY 11/ 45

Parameter-Argument Matching

Usually by number and by position.
i.e., any call to A must have two arguments, and
they must match the corresponding parameters’ types.

Exception — Perl

Parameters are not declared in a function header. Instead,
parameters are available in an array @_, and are accessed using a
subscript on this array.

Exception — Ada

Arguments and parameters can be linked by name.
> e.g., the call A(y=>b, x=>a) is the same as A(a, b)

{* MONTANA
STATE UNIVERSITY 11/ 45

Motivating Example

Which output should this code

#include <stdio.h> snippet print?

void swap(int i, int j) {
int t =i;

= j;

i=t
}

void main() {
int a=1, b= 2;
printf("a: %d,b: %d\n",
a,b);
swap(a,b);
printf("a: %d,b: %d\n",
a,b);

}

{* MONTANA
STATE UNIVERSITY

12 /45

Motivating Example

Which output should this code

#include <stdio.h> snippet print?

void swap(int i, int j) {

int t = i;

= j;

L a: 1, b: 2
=1t
¥ a: 1, b: 2

void main() {
int a=1, b= 2;
printf("a: %d,b: %d\n",
a,b);
swap(a,b);
printf("a: %d,b: %d\n",
a,b);

}

{* MONTANA
STATE UNIVERSITY

12 /45

Motivating Example

——— oo Which output should this code
#include <stdio.h> snippet print?
void swap(int i, int j) {

int t =1i;

= j;

Co_ . a: 1, b: 2

] =1
} a: 1, b: 2
void main() {

int a=1, b= 2;

printf("a: %d,b: %d\n", or

a,b);
swap(a,b);
printf("a: %d,b: %d\n",
a,b); a: 1, b:
} a: 2, b: 1

{* MONTANA
STATE UNIVERSITY

12 /45

Models of Parameter Passing

call by value: copy going into the procedure

{* MONTANA
STATE UNIVERSITY
13 /45

Models of Parameter Passing

call by value: copy going into the procedure

call by result: copy going out of the procedure

{* MONTANA
STATE UNIVERSITY
13 /45

Models of Parameter Passing

call by value: copy going into the procedure
call by result: copy going out of the procedure

call by value result: copy going in, and again going out

{* MONTANA
STATE UNIVERSITY
13 /45

Models of Parameter Passing

call by value: copy going into the procedure
call by result: copy going out of the procedure
call by value result: copy going in, and again going out

call by reference: pass a pointer to the actual parameter,
and indirect through the pointer

{* MONTANA
STATE UNIVERSITY
13 /45

Models of Parameter Passing

call by value: copy going into the procedure
call by result: copy going out of the procedure
call by value result: copy going in, and again going out

call by reference: pass a pointer to the actual parameter,
and indirect through the pointer

call by name: re-evaluate the actual parameter on every use

{* MONTANA
STATE UNIVERSITY
13 /45

Models of Parameter Passing

Caller Callee
(sub (a, b, ¢)) Call (procedure sub (x, y, z))
, / \ §
In mode
Return
b / \t y
Out mode
Call
< > |
Inout mode Return

{* MONTANA

STATE UNIVERSITY

14 / 45

Pass by Value

Definition

Passing an argument by value means that the value of the
argument is computed at the time of the call and copied to the
corresponding parameter.

Normally implemented by copying going into the procedure.

Mode: In Mode

{* MONTANA
STATE UNIVERSITY 15 / 45

Pass by Value Example

int x ;= 0;

void foo(int y){
X = x + 1;
y =y + 4
print(x);

}

foo(x);
print(x);

O OO ~NOO B WN

[ay

»

{* MONTANA
STATE UNIVERSITY
16 / 45

Pass by Value Example

int x ;= 0;

void foo(int y){ y=0
X = x + 1; x=1
y =y + 4 y=14
print(x);

}

foo(x);
print(x);

O OO ~NOO B WN

[ay

»

{* MONTANA
STATE UNIVERSITY
16 / 45

Pass by Value Example

1lint x := 0;

2

3| void foo(int y){ y=0
4 x 1= x + 1; x=1
5 y ==y + 4; y =4
6 print (x);

7/}

8

9| foo(x);

10| print (x);

»1 1

{* MONTANA
STATE UNIVERSITY
16 / 45

In Java, all primitive parameters are passed are passed by value.

public void swap(int x, int y){
int t = x;
X Yy
y t;

}

public static void main(String [] args){
int a = 10;
int b = 20;
System.out.println("a: " +a 4+ ", b: " 4+ b);
swap(a,b);
System .out.printIln("a: "+ a + ", b: " 4+ b);

After executing main():
»a: 10, b: 20
»a: 10, b: 20

{* MONTANA

STATE UNIVERSITY

17 /45

Pass by Value

Languages: C, Pascal, Ada, Scheme, Algol68, Java

Advantage: original values are not changed.

Disadvantages: additional storage and computation are required.

{* MONTANA
STATE UNIVERSITY
18 /45

Pass by Result

Definition

An argument passed by result is implemented by copying the final
value computed for the parameters out to the argument at the end
of the life of the call.

Mode: Out Mode
Languages: Ada

Disadvantages: Require extra storage location and copy operation

{* MONTANA
STATE UNIVERSITY
19 /45

Pass by Result

iﬂt X = 0;

void foo(int y){
x = x + 1;
y =y + 4
print(x);

}

foo(x);
print(x);

{A MONTANA
STATE UNIVERSITY

20/ 45

Pass by Result

iﬂt X = 0;

void foo(int y){

=77
xEar x=1
y =y + 4 B
print(x); y_4

}

foo(x);

print(x);

{A MONTANA
STATE UNIVERSITY

20/ 45

Pass by Result

int x ;= 0;
void foo(int y){ =77
x = x + 1; x =1
y =y + 4 —
print (x); y=+4
}
foo(x);
print (x);
»14 x changed after calling foo

{* MONTANA
STATE UNIVERSITY
20/45

Pass by Result

Potential problems:
sub(pl, pl);

whichever formal parameter is copied back
will represent the current value of pl

sub(list[subl, sub);

Compute address of 1list[sub] at the beginning of the
subprogram or end?

{* MONTANA
STATE UNIVERSITY
21/45

Pass by Value-Result

Definition

An argument passed by value-result is implemented by copying
the argument’s value into the parameter at the beginning of the
call and then copying the computer result back to the
corresponding argument at the end of the call.

Mode: In-out Mode

Value-result is often called copy-in-copy-out, a combination of pass
by value and pass by result.

{* MONTANA
STATE UNIVERSITY
22 /45

Pass by Value-Result

Languages: Fortran, sometimes Ada

Advantages and Disadvantages:
» All those of pass by result
» and all those of pass by value

{* MONTANA
STATE UNIVERSITY
23 /45

Pass by Value-Result

iﬂt X = 0;

void fOO(int y){
x = x + 1;
y =y + 4
print(x);

}
foo(x);
print(x);

»

{A MONTANA
STATE UNIVERSITY

24 /45

Pass by Value-Result

iﬂt X = 0;

void foo(int y){

y=20
xEar x=1
y =y + 4 B
print(x); y_4
}
foo(x);
print(x);

»

{A MONTANA
STATE UNIVERSITY

24 /45

Pass by Value-Result

int x ;= 0;

void foo(int y){

y=0

x = x + 1; x=1
y ==y + 4; —
print (x); y=4

}

foo(x);

print(x);

»1 4

x changed after calling foo

{* MONTANA
STATE UNIVERSITY

24 /45

Pass by Reference

Definition

Passing an argument by reference or by address means that the
memory address of the argument is copied to the corresponding
parameter so the parameter becomes an indirect reference (pointer)
to the actual argument.

Mode: In-out Mode
Also called pass-by-sharing

Pass via an access path: Instead of physically move a value, we
move an access path to a value

{* MONTANA
STATE UNIVERSITY
25 /45

Aliasing

Definition
Aliasing occurs when, within a function or procedure, the same
memory location can be accessed using different names.

{* MONTANA
STATE UNIVERSITY
26 /45

Aliasing

Definition

Aliasing occurs when, within a function or procedure, the same
memory location can be accessed using different names.

Example

Examples of Aliasing:

> the same variable is both passed and globally referenced from
the called function

» the same variable is passed for two different parameters.

> two or more references (i.e., pointers) to the same location

{* MONTANA
STATE UNIVERSITY

26 /45

Pass by Reference

Languages: Fortran, Perl, Pascal var params, Java objects,
permitted in C++, C4, Cobol

Advantage: Passing process is efficient

Disadvantages:
» Slower accesses to formal parameters
» Potentials for unwanted side effects (collisions)

» Unwanted aliases

{* MONTANA
STATE UNIVERSITY
27 /45

Pass by Reference

int x := 0;

void foo(int y){

x = x + 1;
y =y + 4
print(x);

}

foo(x);

Print(x);

»

{A MONTANA
STATE UNIVERSITY

28 /45

Pass by Reference

int x := 0;

void foo(int y){ X_
x = x4+ 1 -

y=20
y =y + 4; x=y= 1
print(x); x=y=25
}
foo(x);
Print(x);

»

{A MONTANA
STATE UNIVERSITY

28 /45

Pass by Reference

int x ;= 0;

void foo(int y){

X = x + 1; x=y=0
y =y + 4 =y=1
print(x); x=y=25

}

foo(x);

print(x);

»5 5

Calling foo changed x

{* MONTANA
STATE UNIVERSITY

28 /45

Passing in C

Swap Fails

#include <stdio .h>

void swap(int i, int j) {
int t = i;
=i
i=t

}

void main() {
int a =1, b= 2;

printf("a: %dTb: ’%d\n" ,a,b);

swap(a,b);

printf("a: %d,b: %d\n" a,b);

STATE UNIVERSITY

Swap with Pointers

#include <stdio.h>

void swap(int =i, int xj) {
int t = xi;
ki o= %],
*j = t;

}

void main() {
int a=1, b = 2;
printf("a: %d b: %d\n" ,a,b);
swap(&a, &b);
printf("a: %d,b: %d\n" ,a,b);

}
a: 1, b: 2
a: 2, b: 1

20 /45

Pass by Name

Definition

An argument passed by name behaves as though it is textually
substituted for each occurrence of the parameter.

Formals are bound to an access method at the time of the call, but
actual binding to a value or address takes place at the time of a
reference or assignment. Expression is re-evaluated on each access.

Originated with Algol 60, but was dropped by Algol's successors —
Pascal, Ada, Modula.

{* MONTANA
STATE UNIVERSITY
30/45

Pass by Name

Definition

Pass by name is an example of late binding, since evaluation of
the argument is delayed until its occurrence in the function body is
actually executed.

Definition
Late binding is associated with lazy evaluation in functional
languages

{* MONTANA
STATE UNIVERSITY
31/45

Pass by Value versus Pass by Name

int x := 0;

void bar(int y){

print(y);
X = x + 1;
print(y);

bar(x+10);

»

»

{* MONTANA
STATE UNIVERSITY

32 /45

Pass by Value versus Pass by Name

int x := 0;

void bar(int y){

print(y);
X = x + 1;
print(y);
bar(x+10);
» Pass by Value

»

{* MONTANA
STATE UNIVERSITY

32 /45

Pass by Value versus Pass by Name

int x := 0;

void bar(int y){

print(y);

X = x + 1;

print(y);
bar(x+10);
» 10 10 Pass by Value
> Pass by Name

{* MONTANA
STATE UNIVERSITY

32 /45

Pass by Value versus Pass by Name

int x := 0;

void bar(int y){

print(y);

X = x + 1;

print(y);
bar(x+10);
» 10 10 Pass by Value
» 10 11 Pass by Name

{* MONTANA
STATE UNIVERSITY

32 /45

Parameter Passing Mode Example

Consider this simple code
snippet in Ada.

WO ~NOO B WN -

=
N = O O

var y:integer;

procedure A(x:integer);

begin
write(x);
x = 1;
write (y+x);
end;
begin
y = 5;
Aly):
write(y);
end;

{* MONTANA
STATE UNIVERSITY

33 /45

Parameter Passing Mode Example

Consider this simple code
snippet in Ada.

Pass by ...
> value
> result

» value-result

v

reference

WO ~NO OB WN

=
N = O O

var y:integer;

procedure A(x:integer);

begin
write(x);
x = 1;
write (y+x);
end;
begin
y = 5;
Aly):
write (y);
end;

{* MONTANA
STATE UNIVERSITY

33 /45

Parameter Passing Mode Example: Value

Pass by Value

O ~NOOT > WN -

=
N P O O

var y:integer;

procedure A(x:integer);

begin

write(x);
x = 1;
write (y+x);
end;
begin

y = 5;
Aly):
write(y);
end;

{* MONTANA
STATE UNIVERSITY

34 /45

Parameter Passing Mode Example: Value

Pass by Value

Which values are written?

Line 4:

Pass by Value:
» In mode

» from caller to callee

O ~NOOT s WN -

var y:integer;

procedure A(x:integer);

begin

write(x);
x = 1;
write (y+x);
end;
begin

y = 5;
Aly):
write(y);
end;

{* MONTANA
STATE UNIVERSITY

34 /45

Parameter Passing Mode Example: Value

Pass by Value

Which values are written?

Line 4: 5
Line 6:

Pass by Value:
» In mode

» from caller to callee

O ~NOOT s WN -

var y:integer;

procedure A(x:integer);

begin

write(x);
x = 1;
write (y+x);
end;
begin

y = 5;
Aly):
write(y);
end;

{* MONTANA
STATE UNIVERSITY

34 /45

Parameter Passing Mode Example: Value

Pass by Value

Which values are written?

Line 4: 5
Line 6: 6
Line 11:

Pass by Value:
» In mode

» from caller to callee

O ~NOOT s WN

var y:integer;

procedure A(x:integer);

begin

write(x);
x = 1;
write (y+x);
end;
begin

y = 5;
Aly):
write(y);
end;

{* MONTANA
STATE UNIVERSITY

34 /45

Parameter Passing Mode Example: Value

Pass by Value

Which values are written?

Line 4: 5
Line 6: 6
Line 11: 5

Pass by Value:
» In mode

» from caller to callee

O ~NOOT s WN

var y:integer;

procedure A(x:integer);

begin

write(x);
x = 1;
write (y+x);
end;
begin

y = 5;
Aly):
write(y);
end;

{* MONTANA
STATE UNIVERSITY

34 /45

Parameter Passing Mode Example: Result

Pass by Result

Which values are written?

Pass by Value/Result:
» Out Mode

» from callee to caller

O ~NO O WN

var y:integer;

procedure A(x:integer);

begin

write(x);

x = 1;
write (y+x);

{* MONTANA
STATE UNIVERSITY

35 /45

Parameter Passing Mode Example: Result

Pass by Result

Which values are written?

Line 4:

Pass by Value/Result:
» Out Mode

» from callee to caller

O ~NO O WN

var y:integer;

procedure A(x:integer);

begin

write(x);

x = 1;
write (y+x);

{* MONTANA
STATE UNIVERSITY

35 /45

Parameter Passing Mode Example: Result

Pass by Result

l{var y:integer;
Which values are written? 2| procedure A(x:integer);
3 begin
Line 4: 77 4 write(x);
: 5 x = 1;
Line 6: 6 write (y+x);
7 end;
8| begin
9 y := 5
10 Aly);
Pass by Value/Result: 11 write (y)
» Out Mode 12| end

» from callee to caller

{* MONTANA
STATE UNIVERSITY
35 /45

Parameter Passing Mode Example: Result

Pass by Result

Which values are written?

Line 4: 7
Line 6: 6
Line 11:

Pass by Value/Result:
» Out Mode

» from callee to caller

O ~NO O WN

var y:integer;

procedure A(x:integer);

begin

write(x);

x = 1;
write (y+x);

{* MONTANA
STATE UNIVERSITY

35 /45

Parameter Passing Mode Example: Result

Pass by Result

Which values are written?

Line 4: 7
Line 6: 6
Line 11: 1

Pass by Value/Result:
» Out Mode

» from callee to caller

O ~NO O WN

var y:integer;

procedure A(x:integer);

begin

write(x);

x = 1;
write (y+x);

{* MONTANA
STATE UNIVERSITY

35 /45

Parameter Passing Mode Example: Value/Result

Pass by Value/Result

Which values are written?

Pass by Value/Result:
» In-out Mode
» from caller to callee

» from callee to caller

O ~NO Ol WN

var y:integer;

procedure A(x:integer);

begin
write(x);
x = 1;
write (y+x);

{* MONTANA
STATE UNIVERSITY

36 /45

Parameter Passing Mode Example: Value/Result

Pass by Value/Result

Which values are written?

Line 4:

Pass by Value/Result:
» In-out Mode
» from caller to callee

» from callee to caller

O ~NO Ol WN

var y:integer;

procedure A(x:integer);

begin
write(x);
x = 1;
write (y+x);

{* MONTANA
STATE UNIVERSITY

36 /45

Parameter Passing Mode Example: Value/Result

Pass by Value/Result

Which values are written?

Line 4: 5
Line 6:

Pass by Value/Result:
» In-out Mode
» from caller to callee

» from callee to caller

O ~NO Ol WN

var y:integer;

procedure A(x:integer);

begin
write(x);
x = 1;
write (y+x);

{* MONTANA
STATE UNIVERSITY

36 /45

Parameter Passing Mode Example: Value/Result

Pass by Value/Result

Which values are written?

Line 4: 5
Line 6: 6
Line 11:

Pass by Value/Result:
» In-out Mode
» from caller to callee

» from callee to caller

O ~NO Ol WN

var y:integer;

procedure A(x:integer);

begin
write(x);
x = 1;
write (y+x);

{* MONTANA
STATE UNIVERSITY

36 /45

Parameter Passing Mode Example: Value/Result

Pass by Value/Result

Which values are written?

Line 4: 5
Line 6: 6
Line 11: 1

Pass by Value/Result:
» In-out Mode
» from caller to callee

» from callee to caller

O ~NO Ol WN

var y:integer;

procedure A(x:integer);

begin
write(x);
x = 1;
write (y+x);

{* MONTANA
STATE UNIVERSITY

36 /45

Parameter Passing Mode Example: Reference

Pass by Reference

Which values are written?

Pass by Reference:
> In-out Mode

> pass-by-sharing

O~NOO P~ WN

var y:integer;

procedure A(x:integer);

begin

write(x);

x = 1;
write (y+x);

Aly):
write(y);
end;

{* MONTANA
STATE UNIVERSITY

37 /45

Parameter Passing Mode Example: Reference

Pass by Reference

Which values are written?

Line 4:

Pass by Reference:
> In-out Mode

> pass-by-sharing

O~NOO P~ WN

var y:integer;

procedure A(x:integer);

begin

write(x);

x = 1;
write (y+x);

Aly):
write(y);
end;

{* MONTANA
STATE UNIVERSITY

37 /45

Parameter Passing Mode Example: Reference

Pass by Reference

Which values are written?

Line 4: 5
Line 6:

Pass by Reference:
> In-out Mode

> pass-by-sharing

O~NOO P~ WN

var y:integer;

procedure A(x:integer);

begin

write(x);

x = 1;
write (y+x);

Aly):
write(y);
end;

{* MONTANA
STATE UNIVERSITY

37 /45

Parameter Passing Mode Example: Reference

Pass by Reference

Which values are written?

Line 4: 5
Line 6: 2
Line 11:

Pass by Reference:
> In-out Mode

> pass-by-sharing

O~NOO P~ WN

var y:integer;

procedure A(x:integer);

begin

write(x);

x = 1;
write (y+x);

Aly):
write(y);
end;

{* MONTANA
STATE UNIVERSITY

37 /45

Parameter Passing Mode Example: Reference

Pass by Reference

Which values are written?

Line 4: 5
Line 6: 2
Line 11: 1

Pass by Reference:
> In-out Mode

> pass-by-sharing

O~NOO P~ WN

var y:integer;

procedure A(x:integer);

begin

write(x);

x = 1;
write (y+x);

Aly):
write(y);
end;

{* MONTANA
STATE UNIVERSITY

37 /45

call by value: copy going into the procedure

call by result: copy going out of the procedure
call by value result: copy going in, and again going out

call by reference: pass a pointer to the actual parameter,
and indirect through the pointer

call by name: re-evaluate the actual parameter on every use

{* MONTANA
STATE UNIVERSITY
38 /45

Activation Records

Definition

Activation records is a block of information associated with each
function activation, including the function’s parameters and local
variables.

An individual activation record has space for:

Parameters and local variables

Return address

Saved registers

Temporary variables

Return value

Static link - to the function’s static parent
Dynamic link - to the activation record of the caller

{* MONTANA
STATE UNIVERSITY
39 /45

vV vV VvyVvVY VvV VvYyYy

Example C/C++ Program

int h, i;

void B(int w) {
int j, k;
i = 2%w;
w = wtl;

}

void A(int x, int y) {
bool i, j;
B(h);

}

int main() {
int a, b;
h =5; a=3; b= 2;
A(a, b);

STATE UNIVERSITY

40/ 45

Run-Time Stack of Activation Records

h 5
1 10
h 5 r
1 undef la___ 3
h undef AT L3‘ """ b :2
L unde by KT
........ bgoeeoe- Y2
e e I x_3. L 1 undef
b 2 v 2 i undef
i __undef| [I
unde LW 2
: l | i..__undef|
k undef
Activation of main main calls A A calls B

{* MONTANA
STATE UNIVERSITY
41/ 45

Recursive Functions

Definition
A recursive function is a function that can call itself, either
directly or indirectly.

Example
int factorial (int n) {
if (n < 2)

return 1;
else

return n * factorial(n-1);

{* MONTANA
STATE UNIVERSITY

42 /45

Run Time Stack

Definition
A run-time stack is a stack of activation records used to model
the semantics of function call and return.

A stack of activation records:

» Each new call pushes an activation record, and each
completing call pops the topmost one.

» So, the topmost record is the most recent call, and the stack
has all active calls at any run-time moment.

{* MONTANA
STATE UNIVERSITY
43 /45

Run Time Stack

int factorial (int n) {
if (n < 2)
return 1;
else
return n * factorial(n-1);

|

Example
Consider the call factorial(3).

This places one activation record onto the stack and generates a
second call factorial(2).

This call generates the call factorial (1), so that the stack gains
three activation records.)

{* MONTANA
STATE UNIVERSITY
44 /45

Stack Activity for the Call factorial(3)

}"1—1" _______ 3 ‘ T 37 [nootT 37 [nootT 3 hf """""" ?‘
I 277 [noo 277 [oot 2
oot -
(a) (b) (c) (d) (e)
First Call Second Call Third call Second call First call

returns 1 returns 2¥1=2 returns 3*2=6

{* MONTANA
STATE UNIVERSITY
45 / 45

