132 Math Midterm Exam

Name:	
ID:	
QUESTION 1: Fill in the planks in the following and Explain your answer:	
a-	For any proposition p , The truth value of the proposition $p \leftrightarrow p$ is
b-	If $p \lor q$ is true, then the truth value of $\neg p \to q$ is
C-	The negation of the statement $[\forall x \in \mathbb{R}: x^2 \geq 0]$ is
d-	The inverse of the contrapositive of the proposition $p o q$ is
e-	To prove that for any integer n , 2 divides n^2+n using proof by cases, we need to discuss two cases which are and
f_	The truth value of the statement $\exists x \in \{1, 2, 3, 4\}, 2^x < x$ is

QUESTION 2:

a- without using truth tables, prove that

$$\neg (p \to r) \to \neg q \equiv (p \land q) \to r.$$

b- Show that the statement "For every positive integer $n, n^2 \ge 2n$ " is false.

c- Prove that there exists an integer m such that $m^2 > 10^{100}$.

QUESTION 3:

a- Prove that if n is an integer, then n is even if and only if $3n^2 + 2n + 1$ is odd.

b- Prove that $\forall n \in A(3^n < n^2)$ is true, where $A = \{-1, -2, -3\}$.

QUESTION 4: Use mathematical induction to prove that for every positive integer n,

$$2 + 2(2^2) + 3(2^3) + \dots + n2^n = (n-1)2^{n+1} + 2$$