132 Math Midterm Exam

Name:
ID:

QUESTION 1: Fill in the planks in the following and Explain your answer:
a- For any proposition p, The truth value of the proposition $p \leftrightarrow p$ is \qquad .
b- If $p \vee q$ is true, then the truth value of $\neg p \rightarrow q$ is \qquad .
c- The negation of the statement $\left[\forall x \in \mathbb{R}: x^{2} \geq 0\right]$ is \qquad .
d- The inverse of the contrapositive of the proposition $p \rightarrow q$ is \qquad .
e- To prove that for any integer $n, 2$ divides $n^{2}+n$ using proof by cases, we need to discuss two cases which are \qquad and \qquad .
f - The truth value of the statement $\exists x \in\{1,2,3,4\}, 2^{x}<x$ is \qquad .

QUESTION 2:

a- without using truth tables, prove that

$$
\neg(p \rightarrow r) \rightarrow \neg q \equiv(p \wedge q) \rightarrow r
$$

b- Show that the statement "For every positive integer $n, n^{2} \geq 2 n$ " is false.
c- Prove that there exists an integer m such that $m^{2}>10^{100}$.

QUESTION 3:

a- Prove that if n is an integer, then n is even if and only if $3 n^{2}+2 n+1$ is odd.
b- Prove that $\forall n \in A\left(3^{n}<n^{2}\right)$ is true, where $A=\{-1,-2,-3\}$.

QUESTION 4: Use mathematical induction to prove that for every positive integer n,

$$
2+2\left(2^{2}\right)+3\left(2^{3}\right)+\cdots+n 2^{n}=(n-1) 2^{n+1}+2
$$

