King Saud University

Faculty of Sciences

Department of Mathematics

Second Examination Math 132 Semester I 1439-1440 Time: 1H30

Exercise 1:(4+3)

- 1. Consider the two sets $A := \{1, 2, 3, 4, \{1\}, \{2\}, \{1, 2\}, \{1, \{1\}\}\}, \{2, \{2\}\}\}\}$ and $B := \{\emptyset, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$. Determine whether each of the following seven statements is true or false. (Justify your answer).
 - (i) S_1 : " $\{1,2\} \in A$ ". (ii) S_2 : " $\{1,2\} \subseteq A$ ". (iii) S_3 : " $\{1,\{2\}\} \subseteq A$ ".
 - (iv) S_4 : " $A \cap \{1, 2, \{\{1\}, \{2\}\}\} = \{1, 2\}$ ". (v) S_5 : " $\emptyset \in B$ ".
 - (vi) S_6 : " $\{\{\emptyset\}\}\subseteq B$ ". (vii) S_7 : " $(\{\emptyset,\{\emptyset\}\}\cap\{\emptyset,\{\emptyset\}\}\})\subseteq B$ ".
- 2. Consider the following three sets $C := \{a, b, c\}, D := \{1, 2, a\}$, and $E := \{(a, 1), (1, a), (b, b), (2, 2), (c, 2), (c, a)\}$. Find the following sets: (i) $(C \cap D) \times C$. (ii) $E \setminus (C \times D)$. (iii) $\{\emptyset\} \times E$.

Exercise 2: (2+2+(2+1+2))

Let R be the relation from the set $A := \{1, 3, 5, 7\}$ to the set $B := \{0, 1, 2, 3, 4\}$ defined as follows: for $a \in A$ and $b \in B$, $[(aRb) \Leftrightarrow (a \leq b)]$.

In this exercise, the elements of each of the sets A and B are listed in icreasing order.

- 1. List all the ordered pairs in the relation R.
- 2. Represent the relation R with a matrix.
- 3. Let S be the relation from B to A defined by $S := \{(0,1), (1,1), (2,1), (3,5)\}.$
 - (a) Find the following relations: $S^{-1} \cap R$ and $S \circ R$.
 - (b) Draw the digraph of the relation $S \circ R$.
 - (c) Represent the relation $(S \circ R)^2$ with a matrix.

Exercise 3: ((2+2+2)+(2+1))

- 1. Consider the relation $R := \{(a, a), (c, c), (d, d), (e, e), (f, f), (a, f), (f, a), (b, e)\},$ defined on the set $A := \{a, b, c, d, e, f\}.$
 - (a) For the relation R, determine whether it is reflexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive. (Justify your answer).
 - (b) Prove that the relation E, defined on the set A by $E := R \cup \{(b, b), (e, b)\}$, is an equivalence relation on A.
 - (c) Find the equivalence classes of the equivalence relation E.
- 2. Consider the partial ordering P of divisibility on the set $B := \{1, 2, 3, 6, 7, 8\}$ (that is, $P := \{(a, b) \in B \times B : a \text{ divides } b\}$).
 - (a) Draw the Hasse diagram of P.
 - (b) Is P a total ordering?