| King Saud University | College of So | eiences | Departme | nt of Mathematics | |---|---|--|--------------------------------------|---| | Second Examination | Math 132 | Semester | I (1442) | Time:1H30 | | Exercise 1: | | | | | | 1. Consider the sequen | $(u_n)_{n=0}^{\infty}$ defined | as follows: | $u_0 = 2$ $u_1 = 4$ | | | Use mathematical in | nduction to prove t | the following s | $u_{n+1} = 4u_n$ tatement: | $1 - 3u_{n-1}; n \ge 1$ | | $u_n = 3^n +$ | 1, for each integ | ger n , with n | ≥ 0 . | (4pts) | | 2. Consider the set A: Determine whether of (Justify your answer | each of the following | | | | | (a) S_1 : " $\{1,2\} \in A$ | | | | (1 pts) | | (b) S_2 : " $\{1, 2, \emptyset\} \subseteq A$ ". | | | | (1 pts) | | (c) S_3 : " $\{1,\{1\}\}\subseteq A$ ". | | | (1 pts) | | | (d) S_4 : " $\{1, \{\emptyset\}\} \subseteq A$ ". | | | (1 pts) | | | (e) S_5 : " $A \cap \{1, 2, \{\{1\}, \{2\}\}\} = \{1, 2\}$ ". | | | (1 pts) | | | 3. Consider the following $E := \{(a, a), (d, $ | | | | nd | | (i) $(C \cap D) \times C$. (ii) | | | | (3 pts) | | Exercise 2: | | | | | | 1. Let R be the relation from $R := \{(1, 2), (1, 4), (2, 4), (2, 4), (2, 4), (2, 4), (3, 4), (4, 4)$ | the set $B := \{2$ | $2, 3, 4$ } to the | $set C := \{$ | [0,1,2], such tha | | | | | | 1), (4, 1), (4, 2)}. | | (a) Represent the r | elation R with a r | | | (1), (4, 1), (4, 2). (1 pts) | | (a) Represent the r(b) Represent the r(c) Find T ∘ R. | elation R with a r | natrix. | | | | (b) Represent the received (c) Find T ∘ R. 2. Let E be the relation | elation R with a relation T with a relation on the set $x, y \in \mathbb{Z}$, $(x E y)$ | natrix. natrix. et Z. if and only if | | (1 pts)
(1 pts)
(2 pts) | | (b) Represent the reconstruction (c) Find T ∘ R. 2. Let E be the relation Let Prove that E is an edge. 3. Let P be the relation | elation R with a relation T with a relation T with a relation on the set $x, y \in \mathbb{Z}$, $(x E y)$ quivalence relation defined on the set $x, y \in \mathbb{Z}$, $(x E y)$ | natrix. et \mathbb{Z} . if and only if \mathbb{Z} . on \mathbb{Z} . et $S := \{2, 16, P n\}$ if and only if \mathbb{Z} . | $x + y$ is even $\{8, 64, 32, 4\}$. | (1 pts) (1 pts) (2 pts) en. (3 pts) | | (b) Represent the recovery (c) Find T o R. 2. Let E be the relation Let Prove that E is an ed. 3. Let P be the relation (a) Prove that P is | elation R with a relation T with a relation T with a relation of the set $x, y \in \mathbb{Z}$, $(x E y)$ quivalence relation defined on the set $m, n \in S$, $(m - 1)$ partial ordering relation R | natrix. et \mathbb{Z} . if and only if \mathbb{Z} . on \mathbb{Z} . et $S := \{2, 16, P n\}$ if and only if \mathbb{Z} . | $x + y$ is even $\{8, 64, 32, 4\}$. | (1 pts) (1 pts) (2 pts) en. (3 pts) | | (b) Represent the reconstruction (c) Find T ∘ R. 2. Let E be the relation Let Prove that E is an edge. 3. Let P be the relation | elation R with a relation T with a relation T with a relation of the set $x, y \in \mathbb{Z}$, $(x E y)$ quivalence relation defined on the set $m, n \in S$, $(m - 1)$ partial ordering relation R | natrix. et \mathbb{Z} . if and only if \mathbb{Z} . on \mathbb{Z} . et $S := \{2, 16, P n\}$ if and only if \mathbb{Z} . | $x + y$ is even $\{8, 64, 32, 4\}$. | (1 pts) (1 pts) (2 pts) en. (3 pts) (1 pts) | | (b) Represent the recovery (c) Find T o R. 2. Let E be the relation Let Prove that E is an ed. 3. Let P be the relation (a) Prove that P is | elation R with a relation T with a relation T with a relation of the set $x, y \in \mathbb{Z}$, $(x E y)$ quivalence relation defined on the set $m, n \in S$, $(m - 1)$ partial ordering relation of P . | natrix. et \mathbb{Z} . if and only if \mathbb{Z} . on \mathbb{Z} . et $S := \{2, 16, P n\}$ if and only if \mathbb{Z} . | $x + y$ is even $\{8, 64, 32, 4\}$. | (1 pts) (1 pts) (2 pts) en. (3 pts) |