Final Exam, M-106, SMT, (2014-15), Department of Mathematics, King Saud University

1. [3+2 Marks]
1.1) Use logarithmic differentiation to find $\frac{d y(x)}{d x}$ where $y(x)=\frac{\left(x^{2}+3\right)^{2 x}}{\ln (x+1)}$.
1.2) Evaluate the integral $\int x^{2} \sqrt[4]{1-x^{3}} d x$.
2. [3+3 Marks]
2.1) Let A be the area under the graph of $f(x)=2 x+1$, on $[-2,1]$. Find the area A by taking limit of Riemann Sum.
2.2) Evaluate $\int \frac{\cos ^{3}(x)}{\sqrt{\sin (x)}} d x$.
3. $[3+3+3$ Marks]
3.1) Evaluate the integral $\int \frac{2 x^{3}-4 x-8}{\left(x^{2}-x\right)\left(x^{2}+4\right)} d x$.
3.2) Sketch the region bounded by the graphs of the equations: $y=2-x^{2} ; y=x$. And find its area.
3.3) Evaluate the integral $\int e^{x} \sin (x) d x$.
4. [2.5+2.5 Marks]
4.1) Evaluate the integral $\int \frac{\log (x)}{x} d x$
4.2) Evaluate the integral $\int \frac{\sqrt{x^{2}-3}}{x} d x$
5. [3+3 Marks]
5.1) Sketch the region R bounded by the graphs of the equations: $y=\sqrt{\sin (x)}, 0 \leq x \leq \pi$. And find the volume of the solid generated if R is revolved about x-axis.
5.2) Find the arc length of the graph of the equation $y=\ln (\cos (x))$ from $x=0$ to $x=\frac{\pi}{4}$.
6. [5+4 Marks]
6.1) Sketch and find the area of the region that is inside for both graphs of the equation $r=2-2 \cos (\theta)$ and $r=-6 \cos (\theta)$.
6.2) Sketch the graph $C: r=e^{\frac{\theta}{2}}$ from $\theta=0$ to $\theta=\pi$ and find the area of the surface generated by revolving the graph C about the polar axis.
