Final Exam, M-106, TM II, (2014-15), Department of Mathematics, King Saud University

1. [3+2 Marks]

1.1) Use logarithmic differentiation to find $\frac{d y(x)}{d x}$ where $y(x)=\frac{\left(x^{2}+3\right)^{2 x}}{x+1}$.
1.2) Evaluate the integral $\int x \sqrt[3]{7-6 x^{2}} d x$.
2. [3+3 Marks]
2.1) Let A be the area under the graph of $f(x)=x+1$, on $[1,2]$. Find the area A by taking limit of Riemann Sum.
2.2) Evaluate $\int \cos ^{3}(x) \sin ^{4}(x) d x$.
3. [3+3+3 Marks]
3.1) Evaluate the integral $\int \frac{4 x+5}{x^{2}+2 x+10} d x$.
3.2) Sketch the region bounded by the graphs of the equations: $y=x^{2}+2 ; x=2 y-2, x=0, x=1$. And find its area.
3.3) Evaluate the integral $\int \frac{\left(e^{x}+1\right)^{2}}{e^{x}} d x$.
4. [2.5+2.5 Marks]
4.1) Evaluate the integral $\int \frac{1}{x \log x} d x$
4.2) Evaluate the integral $\int \frac{3 \sin x}{1+2 \cos (x)} d x$
5. [3+3 Marks]
5.1) Sketch the region R bounded by the graphs of the equations:
$y=\frac{1}{x}, x=1, x=3, y=0$, and find the volume of the solid generated if R is revolved about y-axis.
5.2) Find the arc length of the graph of the equation $y=5-\sqrt{x^{3}}$ from $A(1,4)$ to $(4,-3)$.

6. [5+4 Marks]

6.1) Sketch and find the area of the region that is outside the graph of the equation $r=1-\sin (\theta)$ and inside the graph of the equation $r=\sin (\theta)$.
6.2) Sketch and find the area of the surface generated her graph of the equation $r=2+2 \cos (\theta)$ about the polar axis.

