King Saud University, College of Sciences, Department of Mathematics, First Term 1435/1436, Final Math 106
Q. No: 1 [1 Marks] Evalute $\int(\cos (x)+2)^{5} \sin (x) d x$
Q. No: 2 [1 Marks] If a point P has a polar coordinate $(r, \theta)=\left(2, \frac{\pi}{4}\right)$, find then its rectangular coordinate (x, y).
Q. No: 3 [1 Marks] Find the arc length of the curve $y=\cosh x$, where $0 \leq x \leq \ln 2$
Q. No: 4 [1 Marks] Evaluate the following improper integral $\int_{0}^{\infty} x e^{-3 x^{2}} d x$
Q. No: 5 [1 Marks] Evalute $\int 2^{-2 x^{2}} x d x$
Q. No: 6 [3 Marks] Let P be the partition of [2,6] determined by $\{2,3,4,6\}$. Find a Riemann sum R_{p} for the given function $f(x)=4-5 x$ by choosing, in each subinterval of $P: a)$ The right-hand endpoint.
b) The left-hand endpoint.
Q. No: 7 [3 Marks] Evaluate $\int \frac{d x}{\sqrt{-5-6 x-x^{2}}} d x$

Q, No: 8 [5 Marks] Evaluate $\int \frac{3 x^{2}+20 x+28}{x^{2}+6 x+8} d x$
Q. No: 9 [4 Marks] Evaluate $\int e^{x} \cos (x) d x$

Q No: 10 [5 Marks] Sketch the region R that is outside of the curve $r=3$ and inside the curve $r=2+2 \cos \theta$ and find its area.
Q No: 11 [5 Marks] Find the area of the surface generated by revolving about the x-axis the curve $C: x=t, y=2 \sqrt{t}$ where $1 \leq t \leq 2$
Q. No: 12 [5 Marks] Let R be the region bounded by the graph $x=-y^{2}+4, y-x=2$, $y=1$. Sketch the region R and find the volume of the solid R generated by revolving the region R about the x-axis.
Q, No: 13 [5 Marks] Sketch the graph of the equation $r=1+\cos (\theta)$, and find the area of the surface of revolution generated by revolving the curve $r=1+\cos (\theta)$, where $\theta \in[0, \pi]$ about the polar axis.

King Saud University, College of Sciences, Department of Mathematics, First Term 1435/1436, Final Math 106

Q. No: 1 [1 Marks] Evalute $\int(\cos (x)+2)^{5} \sin (x) d x$

Let $u=\cos (x)+2$ then $d u=-\sin (x) d x,[0.5]$
and we will have then

$$
\begin{aligned}
\int(\cos (x)+2)^{5} \sin (x) d x & =-\int u^{5} d u=-\frac{u^{6}}{6}+c \\
& =-\frac{(\cos (x)+2)^{6}}{6}+c[0.5]
\end{aligned}
$$

Q. No: 2 [1 Marks] If a point P has a polar coordinate $(r, \theta)=\left(2, \frac{\pi}{4}\right)$, find then its rectangular coordinate (x, y).

$$
\begin{align*}
& x=r \cos (\theta)=2 \cos \frac{\pi}{4}=\frac{2}{\sqrt{2}}=\sqrt{2} \tag{0.5}\\
& y=r \sin (\theta)=2 \sin \frac{\pi}{4}=\frac{2}{\sqrt{2}}=\sqrt{2} \tag{0.5}
\end{align*}
$$

then $(x, y)=(\sqrt{2}, \sqrt{2})$.
Q. No: 3 [1 Marks] Find the arc length of the curve $y=\cosh x$, where $0 \leq x \leq \ln 2$ We have

$$
\begin{aligned}
L_{0}^{\ln 2} & =\int_{0}^{\ln 2} \sqrt{1+\sinh ^{2} x} d x[0.5] \\
& =\frac{3}{4} \cdot[0.5]
\end{aligned}
$$

Q. No: 4 [1 Marks] Evaluate the following improper integral $\int_{0}^{\infty} x e^{-3 x^{2}} d x$

We have

$$
\int_{0}^{\infty} x e^{-3 x^{2}} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} x e^{-3 x^{2}} d x[0.25]
$$

Let $u=-3 x^{2}$, then $d u=-6 x d x[0.25]$
and we have $\int x e^{-3 x^{2}} d x=\int \frac{-1}{6} e^{u} d u=\frac{-1}{6} e^{-3 x^{2}}+C, \quad[0.25]$
and hence we get

$$
\lim _{t \rightarrow \infty} \int_{0}^{t} x e^{-3 x^{2}} d x=\frac{1}{6}[0.25]
$$

Q. No: 5 [1 Marks] Evalute $\int 2^{-2 x^{2}} x d x$

Let $u=-2 x^{2}$ then $-\frac{1}{4} d u=x d x,[0.5]$ and we have

$$
\int 2^{-2 x^{2}} x d x=-\frac{1}{4} \int 2^{u} d u=-\frac{1}{4} \frac{2^{u}}{\ln 2}+c=-\frac{1}{4} \frac{2^{-2 x^{2}}}{\ln 2}+c \quad[0.5]
$$

Q. No: 6 [3 Marks] Let P be the partition of $[2,6]$ determined by $\{2,3,4,6\}$. Find a Riemann sum R_{p} for the given function $f(x)=4-5 x$ by choosing, in each subinterval of P :

We have 3 subintervals $[2,3],[3,4],[4,6]$, and
$x_{0}=2, x_{1}=3, x_{3}=4, x_{4}=6, \Delta x_{1}=1, \Delta x_{2}=1, \Delta x_{3}=2, w_{k} \in\left[x_{k-1}, x_{k}\right], k=1,2,3[0.5]$

$$
R_{p}=\sum_{k=1}^{3} f\left(w_{k}\right) \Delta x_{k}[0.5]
$$

a) The right-hand endpoint.

$$
\begin{aligned}
R_{p} & =f(3)(1)+f(4)(1)+f(6)(2)[0.5] \\
& =4-(5) 3+4-(5) 4+(4-(5) 6) 2 \\
& =-79[0.5]
\end{aligned}
$$

b) The left-hand endpoint.

$$
\begin{aligned}
R_{p} & =f(2)(1)+f(3)(1)+f(4)(2)[0.5] \\
& =4-(5) 2+4-(5) 3+(4-(5) 4) 2 \\
& =-49[0.5]
\end{aligned}
$$

Q. No: $7[3 \mathrm{Marks}]$ Evaluate $\int \frac{d x}{\sqrt{-5-6 x-x^{2}}}$

We have

$$
\begin{aligned}
\int \frac{d x}{\sqrt{-5-6 x-x^{2}}} & =\int \frac{d x}{\sqrt{4-(x+3)^{2}}}[1] \\
& =\int \frac{d x}{\sqrt{4-u^{2}}},[u=x+3][1] \\
& =\sin ^{-1}\left(\frac{u}{2}\right)+c=\sin ^{-1}\left(\frac{x+3}{2}\right)+c[1]
\end{aligned}
$$

Q, No: 8 [5 Marks] Evaluate $\int \frac{3 x^{2}+20 x+28}{x^{2}+6 x+8} d x$
We have

$$
\begin{aligned}
\int \frac{3 x^{2}+20 x+28}{x^{2}+6 x+8} d x & =\int 3 d x+\int \frac{2 x+4}{x^{2}+6 x+8} d x[2] \\
& =\int 3 d x+\int \frac{2}{x+4} d x[1] \\
& =3 x+2 \ln |x+4|+c[1+1]
\end{aligned}
$$

Q. No: 9 [4 Marks] Evaluate $\int e^{x} \cos (x) d x$

We have

$$
\begin{aligned}
\int e^{x} \cos (x) d x & =e^{x} \sin (x)-\int e^{x} \sin (x) d x \\
& =e^{x} \sin (x)-\left[e^{x}(-\cos (x))+\int e^{x} \cos (x) d x\right. \\
& =e^{x} \sin (x)+e^{x} \cos (x)-\int e^{x} \cos (x) d x \\
& =\frac{1}{2} e^{x}[\sin x+\cos x][2]
\end{aligned}
$$

Q No: 10 [5 Marks] Sketch the region R that is outside of the curve $r=3$ and inside the curve $r=2+2 \cos \theta$ and find its area.
Graph [1]

As $2+2 \cos \theta=3$ then we have $\theta=\pi / 3$ and $\theta=-\pi / 3[1]$

$$
\begin{aligned}
A & =\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}\left((2+\cos \theta)^{2}-3^{2}\right) d \theta[1] \\
& =\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}\left(\cos ^{2} \theta+4 \cos \theta-5\right) d \theta \\
& =\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}\left(\frac{1+\cos 2 \theta}{2}+4 \cos \theta-5\right) d \theta[1] \\
& =\frac{17}{8} \sqrt{3}-\frac{3}{2} \pi[1]
\end{aligned}
$$

Q No: 11 [5 Marks] Find the area of the surface generated by revolving about the x-axis the curve $C: x=t, y=2 \sqrt{t}$ where $1 \leq t \leq 2$

We have

$$
\begin{aligned}
S . A & =2 \pi \int_{1}^{2}|y| \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t[2] \\
& =2 \pi \int_{1}^{2} 2 \sqrt{t} \sqrt{1+\frac{1}{t}} d t[1+1] \\
& =4 \pi \int_{1}^{2} \sqrt{t+1} d t=8 \pi\left(\sqrt{3}-\frac{2}{3} \sqrt{2}\right)[1]
\end{aligned}
$$

Q. No: 12 [5 Marks] Let R be the region bounded by the graph $x=-y^{2}+4, y-x=2$, $y=1$
Sketch the region R and find the volume of the solid R generated by revolving the region R about the x-axis.
Graph [2 Mark]
We have for $1 \leq y \leq 2$

$$
\begin{aligned}
V & =2 \pi \int_{1}^{2} y\left(-y^{2}+4-y+2\right) d y[2] \\
& =\frac{35}{6} \pi[1]
\end{aligned}
$$

or

$$
\begin{aligned}
V & =\pi \int_{-1}^{0}\left((2+x)^{2}-1^{2}\right) d x+\pi \int_{0}^{3}\left((\sqrt{4-x})^{2}-1^{2}\right) d x[1+1] \\
& =\frac{35}{6} \pi[1]
\end{aligned}
$$

Q, No: 13 [5 Marks] Sketch the graph of the equation $r=1+\cos (\theta)$, and find the area of the surface of revolution generated by revolving the curve $r=1+\cos (\theta)$, where $\theta \in[0, \pi]$ about the polar axis.
Graph [1 Mark]
We have

$$
\begin{aligned}
S . A & =2 \pi \int_{0}^{\pi}|r \sin \theta| \sqrt{(1+\cos \theta)^{2}+(-\sin \theta)^{2}} d \theta[2] \\
& =2 \pi \int_{0}^{\pi}|r \sin \theta| \sqrt{\cos ^{2} \theta+2 \cos \theta+1+(-\sin \theta)^{2}} d \theta \\
& =2 \sqrt{2} \pi \int_{0}^{\pi}(1+\cos \theta)^{\frac{3}{2}} \sin (\theta) d \theta[u=\cos \theta][0.5]
\end{aligned}
$$

we have $\int(1+\cos \theta)^{\frac{3}{2}} \sin (\theta) d \theta=-\int(1+u)^{\frac{3}{2}} d u=-\frac{2}{5}(u+1)^{\frac{5}{2}}+c[1]$ and then

$$
\begin{aligned}
S . A & =2 \sqrt{2} \pi \int_{0}^{\pi}(1+\cos \theta)^{\frac{3}{2}} \sin (\theta) d \theta \\
& =\frac{32}{5} \pi[0.5]
\end{aligned}
$$

