Work due to friction

If friction is involved in moving objects, work has to be done against the kinetic frictional force.

This work is:

$$
W_{f}=f_{k} \cdot d=f_{k} d \cos 180^{\circ}=-f_{k} d
$$

Example

$$
\hat{y}: F_{n e t, y}=n+F \sin \theta-m g=0
$$

$$
n=m g-F \sin \theta
$$

$$
\hat{x}: F_{n e t, x}=F \cos \theta-\mu_{k} n
$$

$$
=F \cos \theta-\mu_{k}(m g-F \sin \theta)=F\left(\cos \theta+\mu_{k} \sin \theta\right)-\mu_{k} m g
$$

$$
W_{n e t}=F_{n e t, x} \cdot d
$$

N.B. find the work of each force and add the work, can you get the same answer? why

Example

$2.40 \times 10^{2} \mathrm{~N}$ force is pulling an $85.0-\mathrm{kg}$ refrigerator across a horizontal surface. The force acts at an angle of 20.0° above the surface. The coefficient of kinetic friction is 0.200 , and the refrigerator moves a distance of 8.00 m . Find
(a) the work done by the pulling force, and
(b) the work done by the kinetic frictional force.
(a) $W=F \cos \theta \mathrm{~d}=1.8 \times 10^{3} \mathrm{~J}$
(b) $\mathrm{W}_{f}=f_{k} \mathrm{~d} \cos \theta$
$f_{k}=\mu_{\mathrm{k}}(\mathrm{mg}-\mathrm{F} \sin \theta)$ $=1.5 \times 10^{2} \mathrm{~N}$
so $W_{f}=-1.2 \times 10^{3} \mathrm{~J}$

7.5 Work \& Kinetic Energy...

A constant net Force

$\Rightarrow W_{n e t}=m a \cdot \frac{1}{2 a}\left(v_{f}^{2}-v_{i}^{2}\right)$
$W_{n e t}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}$
Work done by $\overrightarrow{\boldsymbol{F}} \Rightarrow W_{\text {net }}=\overrightarrow{\boldsymbol{F}} \cdot \overrightarrow{\boldsymbol{d}}=\boldsymbol{F d}$
$\because F=m a$,
$v_{f}^{2}=v_{i}^{2}+2 a d \Rightarrow d=\frac{1}{2 a}\left(v_{f}^{2}-v_{i}^{2}\right)$
$K \equiv \frac{1}{2} m v^{2}$
$W_{n e t}=K_{f}-K_{i}=\Delta K$

> \{Net Work done on object\} $=$ $\{$ change in kinetic energy of object\}

Kinetic Energy; Work-Energy Principle

- Energy \equiv The ability to do work
- Kinetic Energy \equiv The energy of motion
- "Kinetic" \equiv Greek word for motion
- An object in motion has the ability to do work
- Net work an object = Change in KE.

$$
\mathbf{W}_{\mathrm{net}}=\Delta K
$$

The Work-Energy Principle

* Note: $\mathbf{W}_{\text {net }}=$ work done by the net (total) force.
* $W_{\text {net }}$ is a scalar.

黄 $W_{\text {net }}$ can be positive or negative (because $\triangle K E$ can be both $+\mathcal{\&}$-)
黄 Units are Joules for both work \& KE.

Table 7.1

Kinetic Energies for Various Objects			
Object	Mass (kg)	Speed (m/s)	Kinetic Energy (J)
Earth orbiting the Sun	5.98×10^{24}	2.98×10^{4}	2.65×10^{33}
Moon orbiting the Earth	7.35×10^{22}	1.02×10^{3}	3.82×10^{28}
Rocket moving at escape speed ${ }^{\text {a }}$	500	1.12×10^{4}	3.14×10^{10}
Automobile at 65 mi/h	2000	29	8.4×10^{5}
Running athlete	70	10	3500
Stone dropped from 10 m	1.0	14	98
Golf ball at terminal speed	0.046	44	45
Raindrop at terminal speed	3.5×10^{-5}	9.0	1.4×10^{-3}
Oxygen molecule in air	5.3×10^{-26}	500	6.6×10^{-21}

a Escape speed is the minimum speed an object must reach near the Earth's surface in order to move infinitely far away from the Earth.

7.6 the nonisolated system COSERVATION OF ENERGY

A book sliding to the right on a horizontal surface slows down in the presence of a force of kinetic friction acting to the left. The initial velocity of the book is V_{p}, and its final velocity is v_{f} The normal force and the gravitational force are not included in the diagram

Energy transfer mechanisms.
(a) Energy is transferred to the block by work;
(b) energy leaves the radio from the speaker by mechanical waves;
(c) energy transfers up the handle of the spoon by heat; (d) energy enters the automobile gas tank by matter transfer;
(e) energy enters the hair dryer by electrical transmission; and (f) energy leaves the lightbulb by electromagnetic radiation.

We will be back to this point later

Example 7.9,7.10 \& 7.11

(b)

A Question

- A box is pulled up a rough $(\mu>0)$ incline by a rope-pulley-weight arrangement as shown below. How many forces are doing work on the box?
(a) 2
(b) 3
(c) 4

Solution

READ EXAMPLES 7.7 in your textbook

Example 7.8

A man loads a refrigerator onto a truck using a ramp. Ignore friction.

He claims he would be doing less work if the length of the ramp would be longer. Is
this true?

Dr. Abilallah M. Akeer

Example

A rescue helicopter lifts a 79 -kg person straight up by means of a cable. The person has an upward acceleration of $0.70 \mathrm{~m} / \mathrm{s}^{2}$ and is lifted from rest through a distance of 11 m .
(a) What is the tension in the cable?
(b) How much work is done by the tension in the cable
(c) How much work is done by the person's weight?
(d) Use the work-energy theorem and find the final speed of the person.

$\mathrm{T}-\mathrm{mg}=\mathrm{ma}, \mathrm{T}=8.3 \times 10^{2} \mathrm{~N}$
b) $\mathrm{W}_{\mathrm{T}}=\mathrm{Td}=9.13 \times 10^{3} \mathrm{~J}$
c) $W_{w}=-\mathrm{mgd}=-8.5 \times 10^{3} \mathrm{~J}$
d) $\mathrm{W}_{\mathrm{T}}+\mathrm{W}_{\mathrm{W}}=1 / 2 \mathrm{mv}_{\mathrm{f}}{ }^{2}-1 / 2 \mathrm{mv}_{\mathrm{o}}{ }^{2}$
$\mathrm{V}_{\mathrm{f}}=3.92 \mathrm{~m} / \mathrm{s}$

Example

Two blocks have masses m_{1} and m_{2}, where $m_{1}>m_{2}$. They are sliding on a frictionless floor and have the same kinetic energy when they encounter a long rough stretch (i.e. $\mu>$ 0) which slows them down to a stop. Which one will go farther before stopping?
(a) m_{1}
(b) m_{2}
(c) they will go the same distance

Solution

for the first mass m_{l}

- The work-energy theorem says that for any object $W=D K$
- In this example the only force that does work is friction (since both \mathbf{N} and $\mathbf{m g}$ are perpendicular to the blocks motion).
- The net work done to stop the box is $-f d=-\mu \mathrm{mg} d$.

This work "removes" the kinetic energy that the box had:
$\boldsymbol{W}=\boldsymbol{K}_{\boldsymbol{f}}-\boldsymbol{K}_{\boldsymbol{i}}=\mathbf{0}-\boldsymbol{K}_{\boldsymbol{i}}$

for the second mass $\underline{m}_{\underline{2}}$

- The net work done to stop a box is $-\boldsymbol{f d}=-\mu \mathrm{mg} d$.
$>$ This work "removes" the kinetic energy that the box had:
$>\boldsymbol{W}=\boldsymbol{K}_{\boldsymbol{f}}-\boldsymbol{K}_{\boldsymbol{i}}=\mathbf{0}-\boldsymbol{K}_{\boldsymbol{i}}$
- This is the same for both boxes (same starting kinetic energy).

Since $m_{1}>m_{2}$ we can see that $\quad d_{2}>d_{1}$

Example

$0.075-\mathrm{kg}$ arrow is fired horizontally. The bowstring exerts an average force of 65 N on the arrow over a distance of 0.90 m . With what speed does the arrow leave the bow?

$$
\begin{aligned}
W_{n e t} & ==F \bullet d=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \\
v_{f} & =39 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

7.8 Power

Power is the rate at which work is done by a force

$$
\begin{aligned}
& P_{A V G}=W / \Delta t \quad \text { Average Power } \\
& P=d W / d t \quad \text { Instantaneous Power }
\end{aligned}
$$

The unit of power is a Joule/second (J / s) which we define as a Watt (W)

$$
1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{3}
$$

In general, power is defined for any type of energy transfer. $P=d E / d t$
Where $\mathrm{dE} / \mathrm{dt}$ is the rate at which energy is crossing the boundary of the system by a given transfer mechanism.

Note: power \times time $=$ work, so work can be measured in units of kWh h $\left(1 \mathrm{KWh}=\left(10^{3} \mathrm{Watt}\right) \times(3600 \mathrm{~s})=3.6 \times 10^{6} \mathrm{~W}\right.$ s $\left.=3.6 \times 10^{6} \mathrm{~J}=3.6 \mathrm{MJ}.\right)$

British units are hp (horse power)

$1 \mathrm{hp}=550 \mathrm{ft} . \mathrm{lb} / \mathrm{s}=746 \mathrm{~W}$

Example 7.12

An elevator car has a mass of 1600 kg and is carrying passengers having a combined mass of 200 kg . A constant friction forces of 4000 N retards its motion upward, as shown in the figure.
(a) What power deliver by the motor is required to lift the elevator car at a constant speed of $3 \mathrm{~m} / \mathrm{s}$?
(b) What power must the motor deliver at the instant the speed of the elevator is v if the motor is designed to provide the elevator car with an upward acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$?

$$
\begin{aligned}
& \text { (a) } M_{\max }=1800 \mathrm{~kg}, f=4000 \mathrm{~N} \\
& v=3 \mathrm{~m} / \mathrm{s}(\text { constant }) \Rightarrow a=0 \\
& \sum F=T-f-M g=0 \\
& T=f+M g=4000 \mathrm{~N}+\mathbf{1 8 0 0} \times 9.8 \mathrm{~N}=\mathbf{2 . 1 6 \times 1 0 ^ { 4 }} \mathrm{N} \\
& \text { Power: } P=\vec{T} \cdot \vec{v}=T v=\left(2.16 \times 10^{4}\right)(3)=\mathbf{6 4 . 8} \mathrm{kW}
\end{aligned}
$$

(b) Left for you to try

Example : Power Needs of Car
Calculate the power neded far the car (a) to
climb a hill. (b) to pass another car.

$$
\begin{aligned}
& \text { (a) } \\
& \sum F_{X}=0 \\
& F-F_{R}-m g \sin \theta=0 \\
& P=F_{V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \\
& \text { Now, } \theta=0 \\
& \sum F_{X}=m a \\
& F-F_{R}=0 \\
& V=V_{0}+a t \\
& P=F V
\end{aligned}
$$

Problem: determine the power after an elapsed time of 3.0 s

$$
\overline{\mathrm{P}}=\frac{\mathrm{mgh}}{\Delta \mathrm{t}}=\frac{50 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s} \times 2.0 \mathrm{~m}}{3.0 \mathrm{~s}}=330 \mathrm{~W}
$$

