Example;

An object is fired from the ground at $100 \mathrm{~m} / \mathrm{s}$ at an angle of 30° with the horizontal
A. Calculate the horizontal and vertical components of the initial velocity
B. After 2.0 seconds, how far has the object traveled in the horizontal direction?
C. How high is the object at this point?
A.

$$
\begin{aligned}
& v_{i x}=v_{i} \cos \theta=(100 \mathrm{~m} / \mathrm{s})\left(\cos 30^{\circ}\right)=87 \mathrm{~m} / \mathrm{s} \\
& v_{i y}=v_{i} \sin \theta=(100 \mathrm{~m} / \mathrm{s})\left(\sin 30^{\circ}\right)=50 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

B. $\quad v_{i t}=\frac{\Delta x}{\Delta t}$

$$
\Delta x=v_{x} t=(87 \mathrm{~m} / \mathrm{s})(2.0 \mathrm{~s})=174 \mathrm{~m}
$$

C. $\Delta y=v_{i y} \Delta t+\frac{1}{2} g\left(\Delta t^{2}\right)=(50 \mathrm{~m} / \mathrm{s})(2.0 \mathrm{~s})+\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~s})^{2}$

Example;

Strobe photo of Mike Powell, world record holder for running long jump.

Suppose he runs at the speed of a good sprinter, $\mathbf{v}=\mathbf{1 0} \mathbf{~ m} / \mathrm{s}$.
Also suppose he takes off at an angle of 25°.
What is the horizontal distance of the jump?
horizontal distance:
$\Delta x=\mathrm{v}_{i} \cos \theta \cdot t$
get the time from ...
$\Delta y=\mathrm{v}_{i} \sin \theta \cdot t-\frac{1}{2} g t^{2}$
so for $\Delta y=0, \quad t=\frac{2 \mathrm{v}_{i} \sin \theta}{g}$

plug back in...
$\Delta x=\mathrm{v}_{i} \cos \theta \cdot t$

This is only true if $\Delta y=0$, i.e. $y_{f}=y_{i}$.

$$
=\mathrm{v}_{i} \cos \theta \cdot \frac{2 \mathrm{v}_{i} \sin \theta}{g}=\frac{2 \mathrm{v}_{i}^{2}}{g} \cos \theta \sin \theta
$$

$$
\begin{aligned}
& \Delta x=\frac{2 \mathrm{v}_{i}^{2}}{g} \cos \theta \cdot \sin \theta \\
& =\frac{2(10 \mathrm{~m} / \mathrm{s})^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}} 0.91 \cdot 0.42=7.8 \mathrm{~m}
\end{aligned}
$$

Not his best jump...
World record 8.95 m !

How to set the world record long jump

At what angle should Powell have jumped?
$\Delta x=\frac{2 \mathrm{v}_{i}^{2}}{g} \cos \theta \cdot \sin \theta$
A little calculus tells us that
$\cos \theta \cdot \sin \theta$ has its maximal value of 0.5 when $\theta=45^{\circ}$.

A jump at the same speed but at 45° would give:
$\Delta x=\frac{2 \mathrm{v}_{i}^{2}}{g} \cos \theta \cdot \sin \theta=\frac{2(10 \mathrm{~m} / \mathrm{s})^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}} 0.5=10.2 \mathrm{~m}$

More than a meter over the world record!!!

Example :Hitting the bull's eye. How's that?

When the Hunter Fires the Gun the Monkey Drops the Coconut

The gun is aimed at the coconut
Air resistance is negligible.
Figure is not to scale.
Time is slowed down.

PROJECTILE MOTION

Neglecting air resistance...
Projectiles follow parabolic trajectories:
Parabolic proof

$$
v_{X}=v_{i} \cos \theta \text { remains constant so }
$$

$$
\Delta x=x=v_{i} \cos \theta \cdot t \Rightarrow t=\frac{x}{v_{i} \cos \theta}
$$

$$
\left.\begin{array}{rl}
\begin{array}{l}
v_{y i}=v_{i} \sin \theta \\
a_{y} \\
=-g \\
\Delta t
\end{array} \\
\Delta y & =y=?
\end{array}\right\} \quad \begin{aligned}
y & =v_{i} \sin \theta \cdot t-\frac{1}{2} g \cdot t^{2} \\
& \Rightarrow y=(\tan \theta) x-\left(\frac{g}{2 v_{i}^{2} \cos ^{2} \theta}\right) x^{2}
\end{aligned}
$$

Example for a Projectile Motion

- A stone was thrown upward from the top of a cliff at an angle of 37° to horizontal with initial speed of $65.0 \mathrm{~m} / \mathrm{s}$. If the height of the cliff is 125.0 m , how long is it before the stone hits the ground?

$$
\begin{array}{|l|}
v_{x i}=v_{i} \cos \theta_{t}=65.0 \times \cos 37^{\circ}=51.9 \mathrm{~m} / \mathrm{s} \\
v_{y i}=v_{i} \sin \theta_{i}=65.0 \times \sin 37^{\circ}=39.1 \mathrm{~m} / \mathrm{s}
\end{array}
$$

$$
y_{f}=-125.0=v_{y i} t-\frac{1}{2} g t^{2}
$$

$$
g t^{2}-78.2 t-250=9.80 t^{2}-78.2 t-250=0
$$

$$
t=\frac{78.2 \pm \sqrt{(-78.2)^{2}-4 \times 9.80 \times(-250)}}{2 \times 9.80}
$$

$$
t=-2.43 \mathrm{~s} \text { or } t=10.4 \mathrm{~s}
$$

$t=10.4 \mathrm{~s} \quad$ Since negative time does not exist.

Example cont'd

- What is the speed of the stone just before it hits the ground?

$$
\begin{aligned}
& v_{x f}=v_{x i}=v_{i} \cos \theta_{t}=65.0 \times \cos 37^{\circ}=51.9 \mathrm{~m} / \mathrm{s} \\
& v_{y f}=v_{y i}-g t=v_{i} \sin \theta_{i}-g t=39.1-9.80 \times 10.4=-62.8 \mathrm{~m} / \mathrm{s} \\
& |v|=\sqrt{{v_{x f}}^{2}+{v_{y f}}^{2}}=\sqrt{51.9^{2}+(-62.8)^{2}}=81.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- What are the maximum height and the maximum range of the stone?

Do these yourselves at home for fun!!!

Example:

A rescue plane drops a package to stranded explorers. The plane is traveling horizontally at $40.0 \mathrm{~m} / \mathrm{s}$ and is 100 m above the ground.
A. Where does the package strike the ground relative to the point at which it was released.
B. What are the horizontal and vertical components of the velocity of the package just before it hits the ground? What is the speed of the package as it hits the ground?
C. Where is the plane when the package hits the ground? (Assume that the plane does not
 change its speed or course.)

Sample Problem 4-6

In the Fig., a rescue plane flies at 198 $\mathrm{km} / \mathrm{h}(=55.0 \mathrm{~m} / \mathrm{s})$ and a constant elevation of 500 m toward a point directly over a boating accident victim struggling in the water. The pilot wants to release a rescue capsule so that it hits the water very close to the victim.

(a) What should be the angle $\boldsymbol{\varphi}$ of the pilot's line of sight to the victim when the release is made?
Solution

$$
\begin{gathered}
\varphi=\tan ^{-1} \frac{x}{h} \\
x-x_{0}=\left(v_{0} \cos \theta_{0}\right) t \\
y-y_{0}=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2} \\
-500 m=(55.0 \mathrm{~m} / \mathrm{s})\left(\sin 0^{\circ}\right) t-\frac{1}{2}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}
\end{gathered}
$$

Solving for t, we find $t= \pm 10.1 \mathrm{~s}$ (take the positive root).

$$
\begin{gathered}
x-0=(55.0 m / s)\left(\cos 0^{\circ}\right)(10.1 s) \\
x=555.5 m \\
\varphi=\tan ^{-1} \frac{555.5 m}{500 m}=48^{\circ}
\end{gathered}
$$

(b) As the capsule reaches the water, what is its velocity $\overrightarrow{\mathrm{V}}$ in unit-vector notation and as a magnitude and an angle?

When the capsule reaches the water,

$$
\begin{aligned}
v_{x} & =v_{0} \cos \theta_{0}=(55.0 \mathrm{~m} / \mathrm{s})\left(\cos 0^{\circ}\right)=55.0 \mathrm{~m} / \mathrm{s} \\
v_{y} & =v_{0} \sin \theta_{0}-g t \\
& =(55.0 \mathrm{~m} / \mathrm{s})\left(\sin 0^{\circ}\right)-\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(10.1 \mathrm{~s}) \\
& =-99.0 \mathrm{~m} / \mathrm{s} \\
\vec{v} & =(55.0 \mathrm{~m} / \mathrm{s}) \hat{i}-(99.0 \mathrm{~m} / \mathrm{s}) \hat{j} \\
v & =113 \mathrm{~m} / \mathrm{s} \text { and } \theta=-61^{\circ}
\end{aligned}
$$

Sample Problem

Figure shows a pirate ship 560 m from a fort defending the harbor entrance of an island. A defense cannon, located at sea level, fires balls at initial speed $v_{0}=82 \mathrm{~m} / \mathrm{s}$.
(a) At what angle θ_{0} from the horizontal must a ball be fired to hit the ship?
(b) How far should the pirate ship be from the cannon if it is to be beyond the maximum range of the cannonballs?

SOLUTION:

(a) $R=\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}$ Which gives

There are two solutions

$$
\begin{aligned}
& \theta_{0}=\frac{1}{2}\left(54.7^{\circ}\right) \approx 27^{\circ} \\
& \theta_{0}=\frac{1}{2}\left(125.3^{\circ}\right) \approx 63^{\circ}
\end{aligned}
$$

(b) Maximum range is :-

$$
\begin{aligned}
R & =\frac{v_{0}^{2}}{g} \sin 2 \theta_{0}=\frac{(82 \mathrm{~m} / \mathrm{s})^{2}}{9.8 \mathrm{~m} / \mathrm{s}} \sin \left(2 \times 45^{\circ}\right) \\
& =686 \mathrm{~m} \approx 690 \mathrm{~m}
\end{aligned}
$$

The maximum range is 690 m . Beyond that distance, the ship is safe from the cannon.

L: 1103 Phys LECTURES SLIDES T2Y3839lCH4Flash

TRUE OR FALSE? - A car moving in a circle at constant speed is accelerated.

UNIFORM CIRCULAR MOTION

\rightarrow Motion in a circular path at constant speed.

- Velocity is changing, thus there is an acceleration!!
- Acceleration is perpendicular to velocity
- Centripetal acceleration is towards the center of the circle
- Magnitude of acceleration is $a_{r}=\frac{v^{2}}{r}$
- r is radius of circle

103 Phys

UNIFORM CIRCULAR MOTION

E:103 Phys LECTURES SLIDES T2Y38391CH4Flash

Acceleration is in the same direction as the change in velocity.

$$
\Delta \mathbf{v}=\mathbf{v}_{f}-\mathbf{v}_{i}
$$

$$
\sum_{\mathbf{v}_{f}}^{\mathbf{v}_{i}} \Delta \Delta \mathbf{v} \quad a=\frac{\Delta \mathbf{v}}{\Delta t}
$$

An object moving in a circle at constant speed has an instantaneous acceleration, which ...
\ldots is called the radial or centripetal acceleration, ...
... and which points towards the center of the circle.

UNIFORM CIRCULAR MOTION

Acceleration derivation

Similar triangles: $\frac{\Delta v}{v}=\frac{\Delta r}{r} \Rightarrow \Delta v=\frac{v \Delta r}{r}$

$$
a_{r}=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{v}{r} \cdot \frac{\Delta r}{\Delta t}=\frac{v^{2}}{r}
$$

L:1103 Phys LECTURES SLIDES_T2Y3839\FLASH

EXAMPLE;

Approximately what is the centripetal acceleration of someone standing at the Earth's equator?
A. $7 \times 10^{-5} \mathrm{~m} / \mathrm{s}^{2}$
B. $0.03 \mathrm{~m} / \mathrm{s}^{2}$
C. $9.8 \mathrm{~m} / \mathrm{s}^{2}$
D. $3 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$
E. No idea

$$
\begin{array}{r}
v=\frac{2 \pi r}{T}=\frac{2 \pi\left(6.4 \times 10^{6} \mathrm{~m}\right)}{24 \times 60 \times 60 \mathrm{~s}}=465 \mathrm{~m} / \mathrm{s} \\
a=\frac{v^{2}}{r}=\frac{(465 \mathrm{~m} / \mathrm{s})^{2}}{6.4 \times 10^{6} \mathrm{~m}}=0.034 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

Radial and Tangential Quantities

For uniform circular motion

$$
\begin{aligned}
& \vec{v}=0 \hat{r}+v \hat{\theta} \\
& \vec{a}=a \hat{r}+0 \hat{\theta}
\end{aligned}
$$

What about non-uniform circular motion?

$$
\begin{aligned}
& \vec{v}=0 \hat{r}+v \hat{\theta} \\
& \vec{a}=a_{r} \hat{r}+a_{t} \hat{\theta}
\end{aligned}
$$

\boldsymbol{a}_{t} is along the direction of motion

$$
a_{t}=\frac{d|\vec{v}|}{d t}
$$

\boldsymbol{a}_{r} is perpendicular to the direction of motion

$$
a_{r}=\frac{v^{2}}{r}
$$

READ EXAMPLE 4.9

More Example:

(a) When at point P on a circular track of radius 50 m , a bicyclist has a speed of $5 \mathrm{~m} / \mathrm{s}$. In units of $\mathrm{m} / \mathrm{s}^{2}$, the magnitude of his centripetal acceleration is closest to..
A. 0.1
B. 0.5
C. 10
D. 55
E. 250

$$
a_{r}=\frac{v^{2}}{r}=\frac{(5 \mathrm{~m} / \mathrm{s})^{2}}{50 \mathrm{~m}}=0.50 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

(b) He increases his speed at a constant rate during the next lap, and 44.9 s later is back at P. His average speed for the lap was closest to...
A. $6 \mathrm{~m} / \mathrm{s}$
B. $7 \mathrm{~m} / \mathrm{s}$
C. $9 \mathrm{~m} / \mathrm{s}$
D. $12 \mathrm{~m} / \mathrm{s}$
E. $15 \mathrm{~m} / \mathrm{s}$

$$
\bar{V}=\frac{\Delta s}{\Delta t}=\frac{2 \pi R}{\Delta t}=\frac{2 \pi \times 50 \mathrm{~m}}{44.9 \mathrm{~s}}=7.0 \frac{\mathrm{~m}}{\mathrm{~s}},
$$

where Δs is the distance around one lap, i.e.,

the circumference of the circular track.
(c) His new instantaneous speed at P is closest to...
A. $6 \mathrm{~m} / \mathrm{s}$
B. $7 \mathrm{~m} / \mathrm{s}$
C. $9 \mathrm{~m} / \mathrm{s}$
D. $12 \mathrm{~m} / \mathrm{s}$
E. $15 \mathrm{~m} / \mathrm{s}$

Because he increases his speed at a constant rate:

$$
\bar{v}=\frac{v_{i}+v_{f}}{2} \Rightarrow v_{f}=2 \bar{v}-v_{i}=(2 \times 7.0-5.0) \frac{m}{s}=9.0 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

(d) While he is speeding up, his tangential acceleration in $\mathrm{m} / \mathrm{s}^{2}$ is closest to...
A. 0.09
B. 0.21
C. 0.34
D. 0.38
E. 0.55

$$
a_{t}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t}=\frac{(9.0-5.0) \mathrm{m} / \mathrm{s}}{44.9 \mathrm{~s}}=0.089 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

(e) When her velocity is $6.0 \mathrm{~m} / \mathrm{s}$ the magnitude of her total acceleration in $\mathrm{m} / \mathrm{s}^{2}$ is closest to...
A. 0.1
B. 0.2
C. 0.3
D. 0.7

$$
\left.\begin{array}{l}
a_{r}=\frac{v^{2}}{r}=\frac{(6.0 \mathrm{~m} / \mathrm{s})^{2}}{50 \mathrm{~m}}=0.720 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
a_{t}=0.089 \frac{\mathrm{~m}}{s^{2}}
\end{array}\right\} a=\sqrt{a_{r}^{2}+a_{t}^{2}}=0.725 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

